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Spatial correlations and dispersion for fluid transport through packed glass beads studied
by pulsed field-gradient NMR
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The two-dimensional displacement joint probability densityPD(X,Z) for water flowing through a bed of
glass beads has been measured by means of pulsed field-gradient nuclear magnetic resonance. The simulta-
neous particle displacementsX and Z perpendicular and parallel to the pressure gradient, respectively, at a
given encoding timeD, are obtained from an experiment employing orthogonal magnetic field gradients. The
resulting probability density distribution is compared to numerical simulations of flow through an equivalent
system of randomly deposited monodisperse spheres. The dependence of the centered second moments inX
and Z on flow time is discussed for the experimental and simulated data. A crossover from a time scale
dominated by Brownian motion toward a behavior determined by the convective flow and velocity fluctuations
is observed. The mutual dependence between displacements perpendicular and parallel to the flow direction is
revealed in the evolution of a correlation coefficientrX2,Z . This coefficient is found to increase for short times
and to decrease for larger displacements, with a maximum at an average displacement corresponding to the
bead radius. As a means of displaying the cause of these correlations, a correlation probability density
CD(X,Z)5PD(X,Z)2PD(X)PD(Z) is suggested, wherePD(X) andPD(Z) are the marginals ofPD(X,Z). A
plot of this matrix renders zero in the absence of correlations, but produces a characteristic pattern of positive
and negative regions when displacements inX are correlated with those inZ. The time evolution of this pattern
is discussed and compared to the shape of model propagators obtained from an analytical function and a
numerical simulation for a simplified capillary array, respectively.@S1063-651X~98!05611-6#

PACS number~s!: 47.55.Mh, 81.05.Rm, 47.11.1j, 83.70.Gp
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I. INTRODUCTION

Transport and dispersion of fluid phases and solu
within porous solid structures is of importance in a wi
range of areas such as oil reservoir appraisal and man
ment, aquifer behavior, distillation and filtration process
heterogeneous catalyst bed design and performance, po
ant dispersal and recovery in the environment, etc. The fi
has an extensive literature, and a wide range of experim
have been performed, many of which have been summar
in three major references@1–3#, with historically important
compilations and data being also found in Refs.@4,5#. Few
theoretical results are available to describe these fluid tr
port processes, except for the case of Poiseuille flow@6,7#
and for dilute suspensions@8#. Numerical results for long
time behavior have been obtained for two-@9,10# and three-
dimensional@11# structures. Some consideration has be
given to the early time dispersion behavior of solutes,
so-called non-Fickian or nonlocal regime, both experim
tally @12,13# and theoretically@14,15#. In the latter approach
the convection-diffusion equation was solved symbolica
in terms of a Green functionP, which gives the probability
of finding a tracer at positionr at time t, given that it was
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known to be atr0 at t0 . This Green function was used t
express the average mass flux as a function of the in
concentration distribution, with the resulting expression b
ing rearranged and a time-dependent dispersion tensor in
duced, which generalizes the classical local dispersion.
far, this has been worked out only for fluid transport throu
a dilute suspension of spheres, although it was claimed th
could be extended to larger solid phase volume fractio
Experimental data from closely packed beds of spheres@13#
have shown only modest and qualitative agreement with
theory.

Of the many experimental approaches to the character
tion of fluid transport in porous solids, nuclear magne
resonance~NMR! has a number of significant advantage
Principal among these is the fact that NMR studies the fl
directly and is able to investigate optically opaque syste
which constitute the majority of those of interest. A partic
larly powerful NMR method is that based on the use of ma
netic field-gradient pulses to determine the statistics
nuclear spin~and, hence, molecular! displacements@16#.
Such pulsed gradient spin echo~PGSE! NMR methods are
based on the propagator formalism@17# which directly gives
PD(R), the probability distribution of displacementsR
5r (D)2r (0) in time D. This method has been used expe
mentally to characterize the diffusive-convective transp
through a number of model porous solids@18–25#. The
availability of increased computational power has made p
sible simulations with sufficient spatial and temporal reso

:
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FIG. 1. Pulse sequence used for measuring two-dimensional average propagators. rf hard pulses are given by black rectangl
slice selective pulse is indicated by its sinc shape. Gradient pulses in dark gray are encoding gradients, and crusher gradients
residual phase coherences are drawn in light gray. The encoding gradients are applied simultaneously in orthogonal directions.
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tion to compare directly with experiment@23–25#, making
use of algorithms which generate realizations of statist
porous systems@11,26#. All measurements reported to da
have determinedPD(R) for R either parallel or transverse t
the pressure gradient driving the net flow.

However, to our knowledge, no attempt has yet be
made to correlate displacements parallel (Z) and perpendicu-
lar (X) to the pressure gradient quantitatively with each ot
for flow in a porous system, either by experimental or co
putational methods. Preliminary results on flow through
porous sandstone were presented in Ref.@27#. In this paper
we determine, by PGSE NMR, the two-dimensional jo
probability densityPD(X,Z) for water flow in a bed of ran-
domly deposited glass beads. The time evolution of t
propagator, as well as that of the moments and correla
coefficients connected toX and Z, are described and com
pared with extensive computer simulations.

II. THEORY

To obtain the two-dimensional propagator, we have mo
fied the alternating pulsed field-gradient stimulated ec
~APGSTE! version@28# of the PGSTE sequence@29#. In ad-
dition to the original sequence, a second set of grad
pulses has been added; gradients in both orthogonal d
tions are switched simultaneously~see Fig. 1!.

The splitting of the defocussing and refocussing gradie
by insertion of a rf pulse of flip anglep minimizes the effect
of molecular displacements through the internal magn
field gradients, which arise from the differences of magne
susceptibility existing between the porous solid matrix a
the saturating fluid@30#. As described in Ref.@28#, offsetting
the phase of the secondp/2 pulse by 90° allows discrimina
tion between positive and negative displacements.

Each nuclear spini experiences a phase shiftf i that is
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proportional to its position at time 0 and to the area of t
gradient,

f i„g,d,r i~0!…5dv„r i~0!…5d$gB01gg•r i~0!%, ~1!

where ugu andd are the strength and duration of the appli
gradient, respectively,g is the gyromagnetic ratio, andB0
denotes the static magnetic field.v(r i) is the Larmor fre-
quency at the positionr i . After an evolution timeD, the
refocusing gradient results in a negative phase shift wh
leaves the resultant shift

f i~D!5gdg•$r i~D!2r i~0!%5gdg•Ri~D!, ~2!

where Ri(D)5r i(D)2r i(0) indicates the displacement fo
particle i during the observation timeD. The total signal
amplitude is obtained by summation over all spins, equi
lent to the integral

SD~q!5E PD~R!exp$ i2pq•R~D!%dR, ~3!

where q5(2p)21gdg, and the average propagatorPD(R)
5*P(r0)P(r ,D;r0)dr0 . P(r0) is the probability density for
starting positions, whileP(r ,D;r0) is the conditional prob-
ability for displacements fromr0 to r in time D, equivalent to
the Green function mentioned above@14,15#.

The average propagatorPD(R) can therefore be obtaine
directly by Fourier transformation ofSD(q) with respect to
q. Under the circumstances of this study,q consists of two
orthogonal componentsqz andqx ; thus

q5kqz1 iqx , ~4!

wherek and i are unit vectors alongz andx, respectively.z
is parallel to the pressure gradient driving the fluid flow, a
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x is perpendicular to it. The two-dimensional average pro
gator PD(X,Z), for displacementsX and Z, is then calcu-
lated by successive fast-Fourier transform in both directio
It must be mentioned that Eq.~3! is only applicable if the
duration of the gradient pulse is negligible compared to
experimental time (d!D).

The boundary conditions imposed experimentally~see be-
low! ensure that there is no net radial flow and the system
therefore axially symmetric. The propagator for displac
ments in thex-direction,PD(X), is therefore identical for all
directions perpendicular to the flow axis.

III. EXPERIMENT

The NMR measurements were carried out using a GV
CSI spectrometer operating for proton resonance at 85 M
the field being provided by an Oxford Instruments 85/3
horizontal bore magnet equipped with room temperat
shims and S-150 Accustar actively shielded gradient c
providing gradients of up to 0.2 T m21. Phase cycling of the
rf pulses @28# was used to minimize the effects of bac
ground gradients and dc offsets.

A sample of glass beads of 600650-mm diameter@Jen-
cons ~Scientific! Ltd., Leighton Buzzard, UK, Cat. No
H102/1/126# was prepared by filling a glass tube of 27.2-m
inner diameter and 120-mm length with water and adding
wet glass beads and water suspension slowly, allowing
beads to sediment. Air bubbles were removed by stirr
during the filling process. The tube was fitted at both en
with sintered glass disks to ensure an even distribution
streamlines over the whole cross-section. The sample
connected, via a 2-m narrow-bore pipe, to a precision pu
~Pharmacia P50! which was operated at constant volum
flow rates of 4.8, 14.0, and 42.0 ml/min, respectively. T
relaxation time of the flowing water was reduced toT1
5600 ms by adding copper~II ! sulfate, allowing a pulse se
quence repetition time of 3.3 s.

Experiments were performed using the APGSTE pu
sequence given in Fig. 1. The signal was acquired usin
slice-selective soft pulse with an effective axial slice thic
ness of 60 mm located symmetrically at the center of
sample. This was used in order to avoid edge effects wh
could arise from the inflow and outflow of water at the en
of the sample. Two-dimensional data sets were obtained
stepwise variation of the strength of the pulsed gradients
multaneously applied parallel and perpendicular to the fl
direction. Data were acquired usingnX22 andnZ22 evenly
spaced positive and two negative gradient values, res
tively, wherenX andnZ denote the total dimensionality inX
andZ directions, and were chosen as powers of 2~typically
nX516, nZ532 or 64!. Measurements at the two negativ
gradient values served to determine the zero-q phase shift
which enabled the reconstruction of the full data set of
mension (2nX24)3(2nZ24). This matrix was then Fou
rier transformed numerically after zero filling to twice th
original size, and subsequently phase corrected. The ma
als PD(X) andPD(Z) of the resulting propagatorPD(X,Z),
defined as

PD~X!5E PD~X,Z!dZ, P~Z!5E PD~X,Z!dX, ~5!
-
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were compared to one-dimensional propagators obtained
der identical conditions but with a higher resolution of 64
128 points and with symmetrical gradient steps covering
range 2qmax,...,qmax. The propagators matched satisfact
rily. All calculations were performed using interactive da
language~IDL ! @31#.

IV. SIMULATIONS

To generate an adequate representation of the real po
medium, random sphere packing has been simulated by
cessive deposition of grains in a ‘‘gravitational’’ field. Th
Nth grain is introduced at a random location above the bed
N21 grains already deposited, and is allowed to fall unti
reaches a local minimum of its potential energy. A mo
detailed description of the deposition process is found
Refs. @26# and @24#. A random packing of monodispers
spheres was generated by this algorithm, incorporating p
odic boundary conditions along the two horizontal axes~see
Fig. 2!. The sample is made ofNC

3 elementary cubes of sid
a560mm, corresponding to1

10 of the bead diameter, with
NC564. The porositye of the void space was chosen to b
e50.44. The bed permeabilityK was calculated by solving
the Stokes equations, and was found to beK57140 Darcy.

In the next step, the velocity field was generated by so
ing the Stokes equations

“p5m“

2v, “•v50, ~6!

wherev, p, andm are the velocity, pressure, and viscosity
the fluid, respectively, andv50 on the surface of the wette
solid. The symmetric permeability tensorK only depends on

FIG. 2. Example of a reconstructed packed bed of monodisp
spheres.
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the geometry of the system, and describes the relation
tween the macroscopic pressure gradient¹p and the seepag
velocity v̄:

v̄52
1

m
K¹p. ~7!

The numerical method used to solve these equations is
lined in Ref.@32#. It assumes low Reynolds numbers whi
are guaranteed by the experimental conditions employe
this study.

The determination of the average propagator is perform
by inserting a large number of particles uniformly distribut
within the pore space. For each elementary time step,
particle’s position is calculated by adding convective a
random diffusive displacements, where the geometrical
strictions of the solid matrix are taken into account. T
relative weight of these contributions to the displacemen
expressed by the Peclet number

Pe5
v* L

D
, ~8!

wherev* is the interstitial velocity andL is a characteristic
length, taken as being equal to the sphere diameter. The
dom component is adjusted for a given Peclet number to
as large as possible in order to speed up the statistical
vergence, provided that the total elementary jump lengt
kept smaller thana/2 @24#. The precision of these calcula
tions was carefully studied in Ref.@11#; it was concluded tha
the calculations were reliable for Peclet numbers sma
than 1000.

Following this procedure, typically 2.53105 particles
were distributed randomly in the pore space of the latti
and were allowed to undergo flow and Brownian motio
The self-diffusion coefficient was chosen as 2
31029 m2 s21, the sphere diameter as 631024 m, and the
interstitial velocity as 2.8531024, 8.3331024, and 2.5
31023 m s21, respectively. The latter values correspond
the flow rates used during the experiments, i.e., 4.8, 1
and 42.0 ml/min, respectively. Additional simulations we
run with smaller numbers of particles for time scales w
above and below the experimentally accessible range,
for which the self-diffusion coefficient was also varied ov
several orders of magnitude.

This simulation technique for obtaining the displacem
distributions of the particles is, in a sense, strictly equival
to the formalism using the Green function which was dev
oped by Koch and Brady@14,15#, since it amounts to the
solution of the convection-diffusion equation. For this re
son, it was not found necessary to rederive it within t
nonlocal formalism of Refs.@14,15#.

V. MODELING

In order to gain a more direct physical insight into t
relationship between the features observed in the experim
tally determined joint propagatorsPD(X,Z) and the underly-
ing pore space characteristics, we have extended the si
model for flow in a porous solid which we introduced earl
@18#. The model used here consists of 104 cylindrical capil-
e-
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laries of lengthl and uniform radius, isotropically distribute
in orientation. 500 particles are assigned to the start of e
capillary at t50. The velocity vectors are oriented in th
direction of the capillary, and have magnitudes taken at r
dom from the usual uniform distribution appropriate to lam
nar flow within a circular pipe. To represent the axial natu
of the system, we makevmax5V0 cosu, whereu is the angle
between the capillary and thez axis. Coordinates of each
particle are then calculated at various timesD. The important
extension of the model from that in Ref.@18# is that particles
which reach the end of their starting capillaries withinD
transfer to the start of another capillary in which they co
tinue their motion. The orientation of this second capilla
lies on a cone of half-anglea emanating from the end of th
starting capillary.a is constant for each calculation, but
varied in order to give insight into the way in which local
discrete changes in flow direction influence the propaga
PD(X,Z). The final results from all 53106 trials for eacha
are collected in a 64364364 three-dimensional histogram
and stored on disc for further processing. Although the us
such a model may be criticized as being based on a ph
cally unrealistic representation of a real pore space, s
models and more sophisticated versions of them are wid
used for investigating fluid transport in porous solids@33#.

VI. RESULTS AND DISCUSSION

A. Experiments and simulations on spherical beads

To investigate the influence of characteristic system
mensions, both flow rate and encoding time were varied
the experiments over a range of average displacements
ering two orders of magnitude from much less than the b
size of 600mm to about 2 mm. The experiments were r
stricted by the required conditionD/d@1; the smallest ratio
used was larger than 8. On the other hand, encoding ti
exceeding the longitudinal relaxation timeT1 by far were not
considered feasible due to the loss of signal intensity. T
range, however, could be expanded in the simulations wh
similar restrictions do not apply.

In addition, the flow rates had to be chosen to result
Peclet and Reynolds numbers Pe and Re to comply with
conditions of the simulations. For the three flow rates use
the experiment~4.8, 14.0, and 42.0 ml/min, respectively!,
one obtains Pe588, 245, and 720, where Eq.~8! has been
used with L5600 mm. Some simulations were run wit
higher Peclet numbers but only for short times, where it h
been found that the method used is still valid@24#. The Rey-
nolds number is defined as

Re5
v* L

n
, ~9!

with n being the kinematic viscosity of the liquid. Re ind
cates the ratio of inertial and viscous forces, and should
be much larger than unity for optimal simulation results;
this case, it took the three values 0.15, 0.5, and 1.4, res
tively. For such low Reynolds numbers, the deviations of
real velocity field from the solution of the Stokes equatio
are expected to be very small.

Two-dimensional propagators~joint probability densities
for displacementsX andZ) for water flowing in the column
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FIG. 3. Two-dimensional average propagatorPD(X,Z) for experimental data at a flow rate of 42.0 ml/min. All propagators
normalized to**PD(X,Z)dX dZ51. Contour lines are drawn from approximately 0.05 of the peak intensity in linear spacing; num
indicate probability densities in 104 m22. Evolution timesD are as indicated.
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of packed glass beads are shown in Fig. 3 for the 42.0
min flow rate, and for encoding times between 64 and 7
ms. The contour lines indicate regions of equal probabi
density. Numbers at each line are given in 104 m22 and the
propagator is normalized so that**PD(X,Z)dX dZ51. The
propagator is symmetric inX, which is a consequence of th
experimental constraint that no net flow occurs perpendic
to the pressure gradient. In theZ direction, the fraction of
particles experiencing negative displacements is very sm
while a pronounced peak near zero displacement is found
short times.

It can be seen immediately that the lines of equal pr
ability density spread in both directions with increasing tim
At the shortest timeD564 ms, when the mean displaceme
^Z& in the flow direction is 160mm, considerably less tha
the bead size, and when the root-mean-square displace
due to diffusion,A^Z2(D)&, is only 16mm, the total spread
at the outermost line~corresponding to about120 of the peak
probability density! is almost the same inX andZ. Thus, for
an average displacement less than the bead size, the par
spread to a similar degree inX andZ. The same is observe
from experiments with smaller flow rates and hence e
smaller average displacements. For longer times and
larger flow rates, however, the shape of the propagator
comes more elongated, and large particle displacements
cur preferentially alongZ. A closer look at the shape o
individual contour lines reveals that the ratio of their ma
axes,Z/X, is changing, this ratio being larger for contours
higher probability density. This feature suggests that near
higher levels of probability density, which are associa
l/
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or
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ent
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n
or
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e

with small X displacements, particles possess, on avera
much larger displacements in the axial direction than perp
dicular to it. In contrast, for those particles which have tra
eled large distances, the difference betweenX andZ is con-
siderably less pronounced. This deviation from a symme
shape of the two-dimensional propagator already indicate
connection betweenX andZ displacements.

Another feature apparent in Fig. 3 is the position of t
peak for each flow timeD. While it remains near zero for
shorter times, it becomes shifted toward larger displaceme
only for times of 340 ms and larger. A similar behavior h
been found previously with one-dimensional measureme
@18,24#: A narrow Gaussian peak aroundZ50 develops a
shoulder for increasing times and finally disappears for lo
times; the shoulder, on the other hand, gives rise to ano
peak that eventually becomes the center of a Gaussian
tribution, and is given by the average displacement^Z&
5v* D. Observing the one-dimensional propagatorPD(Z)
alone leads to a simplified interpretation of two componen
one quasistatic and the other moving withv.v* . This can
be seen by comparing the two-dimensional propagator w
its marginals~see Fig. 4!: in this example for 42-ml/min flow
rate andD5231 ms, the peak forPD(X,Z) is still at Z
,200 mm, while its projection PD(Z)5*PD(X,Z)dX
shows a maximum probability density near 600mm. As the
marginal represents an average over allX displacements, part
of the information about the real properties of the displac
ment probabilities in two~or three! dimensions is lost, which
can lead to misinterpretations.
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In Fig. 5, simulated propagators at equivalent times
shown for comparison. A similarity is observed for the ge
eral shape of the contour lines and their axis ratios. Howe
a major difference can be found with respect to the peak
maximum probability density. It is much more persistent
the simulation than in the experiment, being prominent e
at the longest evolution time of 750 ms. In the simulations
eventually disappears forD>5 s. Experiments and simula

FIG. 4. Two-dimensional average propagatorPD(X,Z) for ex-
perimental data at a flow rate of 42.0 ml/min,D5231 ms. The
marginalsPD(X) and PD(Z) are drawn along theX and Z axis,
respectively.
e
-
r,
f

n
it

tions generally coincide much better for small average d
placements, as long as the marginalPD(Z) can be described
by a peak nearZ50 and an asymmetrically decaying tail
larger displacements@18,24,25#. The difference between ex
periment and simulations has been discussed previously
possibly arising as a consequence of the surface relax
that tends to remove a fraction of the molecules near
walls in the NMR experiment@25#. Due to the nonslip con-
dition near the wall, this affects mainly spins with sma
velocities, and might lead to a faster decay of the peak n
Z'0. However, allowing a loss of particles at the wall d
not influence the result in earlier simulations@24#.

The influence of large Peclet and Reynolds numbers
also mentioned in Ref.@24#. As in this previous investiga-
tion, edge effects can be ruled out as the inner diamete
the tube is equal to 45 bead diameters.

It must be pointed out that the deviations only affect t
peak at small displacements, and therefore a fraction of
ticles that show small net displacements apart from th
Brownian motion; this fraction disappears much later in t
simulation. However, the behavior for short times is w
represented by the simulations, as well as the probab
densities for large displacements. The numerical simulati
coincide reasonably well with the experimental results on
these limitations are considered.

B. Time and displacement dependence
of moments ofPD„X,Z…

In Sec. VI A, we described the evolution of the propag
tor PD(X,Z) as a function of timeD in a qualitative way by
ear

FIG. 5. Two-dimensional average propagatorPD(X,Z) for simulated data~250 000 particles! at a flow rate of 42.0 ml/min. All

propagators are normalized to**PD(X,Z)dX dZ51. Contour lines are drawn from approximately 0.05 of the peak intensity in lin
spacing. Evolution timesD are as indicated.
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discussing its shape and features such as global and
maxima of probability density. For a quantitative descripti
we will first focus our attention on the development of m
ments ofPD(X,Z) with increasing encoding time and the
dependence on flow rate and Peclet number.

The general definition of moments ofnth order is given as

^Xn&5E P~X,Z!XndX dZ, ^Zn&5E P~X,Z!ZndX dZ.

~10!

It can be expected that the evolution of moments is
tirely determined by the spatial structure of the porous s
tem and the consequent properties of the velocity field. T
moments are only indirectly affected by the time variab
inasmuch as it separates regimes where diffusion and fl
respectively, are dominant for the resulting mean-squa
displacements or second moments. For the first mom
however, a simple relationship is found:

^X&50, ~11!

^Z&5v* D5
Q

eA
D, ~12!

where Q is the flow rate andA the cross-section of the
sample. The average interstitial velocityv* is also known as
the Dupuit-Forcheimer velocity@34#, and is a well-defined
quantity as the setup of the experiment guarantees a con
flow rate Q and thus a constantv* . The average displace
ment in the flow direction,̂Z&, must then be proportional to
time as the contribution due to self-diffusion remains ze
for all times. As no net flow occurs inX, and Brownian
motion leads to an isotropic spreading in all directions,^X&
must be zero. The assumption of an isotropic medium se
justified due to the large number of beads (;1.73105) al-
though the local porespace favors anisotropic spreading.
smaller number of unit cells in the simulation, containi
only 150 beads, can give rise to a certain asymmetry wh

FIG. 6. Average displacement in the flow direction,^Z&, as a
function of time for experimental~open symbols! and simulated
data~solid symbols!. Solid lines indicate a linear fit to the exper
mental data. Numbers denote flow rates in ml/min.
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leads to nonzero first moments^X&. This effect, however,
can be controlled, and is avoided when centered mom
are analyzed.

In Fig. 6, the average displacements^Z& obtained from
experimental data and from the simulations are compared
all three flow rates. Both sets coincide satisfactorily. T
slope of the experimental data yields an interstitial veloc
of (3.160.1)31024 m/s for the flow rate 4.8 ml/min, (8.6
60.2)31024 m/s for 14.0 ml/min, and (2.5360.05)
31023 m/s for 42.0 ml/min, respectively. Given the dime
sions of the system, this leads to an effective porosity of
sample of (e54562)%, in good agreement with the valu
assumed for the simulated random sphere packing.

From the above result, it can be concluded that the fi
moment̂ Z& in fact scales linearly with timeD; in all further
discussions, the time variable can therefore be replaced
the average displacement in the flow direction.

The second moments of displacements parallel and
pendicular to the pressure gradient,^Z2& and ^X2&, contain
contributions from both Brownian motion and convectio
The second moment from self-diffusion alone is isotrop
and given by the relation

^X2~D!&5^Z2~D!&52D~D!D. ~13!

For an infinite isotropic medium,D(D) is a time-
independent constant and equal to the self-diffusion coe
cient D0 . Diffusion within a restricted geometry shows
more complicated pattern. While for displacements mu
smaller than the wall separation,D→D0 is found, displace-
ments much larger than both the average pore size and
correlation length of the pore space lead to a constant s
diffusion coefficient reduced by a certain factor which d
pends on the porosity and the tortuosity of the system@35#.
In the intermediate range,D(D) can be expressed@36# by the
short-time expansion

D~D!

D0
512

4

9Ap

S

V
AD0D1O~D!, ~14!

whereS and V are the surface area and the volume of t
porous system. However, for the glass bead system inv
gated in this study, a significant decrease ofD(D) can only
be expected for times in the order of 1 s, where the influe
of flow is already dominating.

Taking flow into account, in the limit of infinite times, th
propagator is expected to become a Gaussian centeredX
50 in theX direction and a Gaussian shifted by the avera
displacementZ05v* D in theZ direction. It has been shown
that the shape of the propagator becomes roughly Gaus
for average displacements much larger than the bead siz
systems similar to the one investigated in this work@19,24#.
However, as we are interested in the intermediate reg
where this limit is not yet reached, we investigate the tim
dependence of the second moments ofX andZ.

The spreading of the propagator inX andZ is best moni-
tored by looking at the centered second momentsŠ(X
2^X&)2

‹ and Š(Z2^Z&)2
‹. While the former is identical to

^X2& as ^X&50, the latter describes the spreading of t
probability density distribution around the center at^Z&
5v* D. A plot of the centered second moments is shown
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FIG. 7. Dependence of the centered second momentsŠ(X2^X&)2
‹ and Š(Z2^Z&)2

‹ on the average displacement^Z&. ~a! Centered
second moments; experimental results are denoted by larger, open symbols.~b! Derivative d„logŠ(X2^X&)2,(Z2^Z&)2

‹…/d(log^Z&) from
simulated data indicating the exponentg in the expressionŠ(X2^X&)2

‹,Š(Z2^Z&)2
‹}^Z&g.
a
is

w the
Fig. 7~a!. Moments in both directions are found to follow
sigmoidal pattern with a larger slope for intermediate d
placements and a shallower dependence on^Z& for both
small and large average displacements. Assuming a po
law relationship illustrated forZ by
-

er-

Š~Z2^Z&!2
‹}^Z&g}Dg, ~15!

a plot of the exponentg @see Fig. 7~b!# reveals thatg51
describes the region where self-diffusion dominates
spreading of the propagator function at short times, whileg



ce
an
ex

d
e

al
es

ar
rix

no

la

ed

-

-
a

ct
o

e
ct
is
o

ity
w
m

s

ee
ti-

d

as

en-
the

n-
ce-
r a
och

ach

ly
the

o-

,
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51 is again reached asymptotically for very large displa
ments exceeding 10 mm, reflecting the limiting pseudor
dom walk character of the displacement distributions
pected at long times. In between, a maximum ing is found at
a displacement which depends on the Peclet number, an
shifted toward larger average displacements for smaller Pg
is generally larger forŠ(Z2^Z&)2

‹ than forŠ(X2^X&)2
‹. For

the highest flow rate used in this study,g52 is almost
reached, which can be expected to be the maximum v
possible; it is considerably less for the smaller flow rat
Note the minimumg,1 in Š(X2^X&)2

‹ occurring at^Z&
'1 mm. This minimum might be related to the particul
shape of the two-point correlation function of the mat
which possesses a negative region~‘‘anticorrelation’’! be-
tween 0.9 and 2.0 bead radii for a random packing of mo
sized spherical particles@26#. Indeed,̂ Z& at the position of
the minimum corresponds to an average transverse disp
mentAŠ(X2^X&)2

‹ of about 350mm or 1.2 bead radii@see
Fig. 7~a!#.

While this is not a sufficient model for the system studi
here, it is of interest to compare the behavior ofŠ(Z
2^Z&)2

‹ with that predicted for Taylor dispersion for flow
between parallel plates@37#, i.e.,

Š~Z2^Z&!2
‹5S 2D01

v* 2a2

p2D0
DD2

v* 2a4

p4D0
2 ~12e2p2D0D/a2

!.

~16!

The limiting cases are found to be

Š~Z2^Z&!2
‹5H 2D0D1 1

2 v* 2D21O~D3!, D!a2/D0

S 2D01
v* 2a2

p2D0
DD1O~1!, D@a2/D0 .

~17!

A crossover fromg51 to g52 is observed for short dis
placements, equivalent to short times whereD!a2/D0
whereas a decrease ofg back towardg51 is predicted for
the conditionDc*a2/D0 . The observed behavior is qualita
tively similar to the classical Taylor dispersion, showing
crossover fromg51 to 2 at a time scale when the flow effe
on the mean-squared displacement becomes dominant
Brownian motion. At larger̂ Z&, when the spreading of th
propagator almost behaves as in the case of pure dire
flow, henceg'2, this similarity is lost as the spreading
now dominated by the pseudorandom walk caused by fl
around the obstructions of the porous solid.

A comparison of the spreading of the particle probabil
density function due to flow and as a consequence of Bro
ian motion is achieved by determining the ratio of the co
ponents of the dispersion tensorD* and the self-diffusion
coefficientD0 . The dispersion tensorD* can be regarded a
a function of time and therefore average displacement:

D* 5D* ~D!5D* ~^Z&!. ~18!

It is defined by

D* 5
dŠ~R2^R&!2

‹

dD
, ~19!
-
-
-
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.
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whereŠ(R2^R&)2
‹ is the centered second moment in thr

dimensions. In an isotropic porous medium with an inters
tial velocity v* parallel to thez axis,D* can be decompose
into parallel and transverse components@11#

D* 5S D'
*

0
0

0
D'

*
0

0
0

D i*
D . ~20!

The dispersion tensor remains time dependent as longg
Þ1.

In Fig. 8, the components of the dispersion tensor perp
dicular and parallel to the flow direction are compared for
three different flow rates used in this study.D'

* is found to
become constant for average displacements^Z&
*300– 400mm, a value that seems to be roughly indepe
dent of the Peclet number. From this point on, the displa
ments inX are spreading in a way that is characteristic fo
Gaussian propagator. In their treatment of dispersion, K
and Brady@8# suggested thatD'

* was determined entirely by
mechanical contributions and estimated that it would re
its limiting value in a timeDc5a/(v* F1/2), whereF is the
solids volume fraction. This time is equivalent tôZ&
5a/F1/2 which for F50.55 gives ^Z&5800 mm for the
grain diameter ofa5600 mm. This is within a factor of 2 of
the values represented in Fig. 8~b!.

D i* approaches its asymptotic limit much more slow
than D'

* , and does not become constant within even

FIG. 8. Ratio of dispersion coefficients to the self-diffusion c
efficientD0 for experimental and simulated data.~a! Parallel to the
flow direction, D i* (^Z&). ~b! Perpendicular to the flow direction
D'

* (^Z&).
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range of the simulations. For the highest flow rate of
ml/min, D i* is still changing for average displacements^Z&
exceeding 100 bead radii. The limiting values ofD i* can,
however, be estimated reasonably well; they fall in the sa
range as results presented in the literature~see Ref.@20# for a
compilation!. The characteristic time at which the longitud
nal dispersion coefficient becomes roughly constant can
estimated from the simulated data to about 20 s; this is
good agreement with relations given in the literature, wh
the quantityD0D/L2 is of order unity@38#. Koch and Brady
@8# derived expressions for the time required for the nonm
chanical contributions to longitudinal dispersion to rea
their asymptotic limits. The mechanism of relevance to t
study is the so-called boundary layer dispersion arising fr
the nonslip condition of the velocity field at the walls of th
solid matrix. The time for this process to reach its asympto
limit is of order a Pe1/3/v* which, when converted into val
ues of^Z& appropriate to the three velocities used here, g
^Z& in the range (3 – 5)3103 mm. This can be seen to un
derestimate the values suggested by the simulation resu
Fig. 8~a!. The latter are supported by the experimentally d
rived data in that, at the limit of the experiments, correspo
ing to ^Z&'103 mm, there is no sign of approach t
asymptotic behavior.

In Ref. @20#, in which the dispersion coefficient was d
termined by PGSE NMR from the low-q data, a much faste
approach towardD i* (D)'const was found for a similar sys
tem of spherical beads. An identical analysis of the meas
ments presented in this work led to the same values
D i* (D) as those obtained from the full propagator, as
scribed above, and we are unable to offer any explanation
this difference.

The dependence of the dispersion coefficients on Pe
number has been written@39# in the dimensionless power
law form

D i* /D0}Pea. ~21!

For Pe much larger than unity,a52 is found if diffusion is
the predominant mixing effect between different velocitie
as is the case for dispersion in laminar flow in a capilla
tube. If velocity variations within the network are the ma
cause for dispersion,a51 is observed. For a system co
taining regions where the fluid velocity is large and oth
where it is small, an intermediate behavior is expected@11#.
In Ref. @26#, flow through systems containing either sphe
cal or ellipsoidal particles with a wide range of aspect rat
was simulated numerically. An average relationship
D i* /D050.26 Pe1.29 andD'

* /D050.27 Pe0.72 was found for
Pe>10, which coincides well with the values in this stud
In particular, the proportionalityD i* /D'

* }Pe1/2 @40# is found
to a good approximation@see Figs. 8~a! and 8~b!#.

C. Residence time distributions„RTD’s… from PGSE NMR

The displacement distributions, such asPD(Z), derived
from PGSE NMR, are formally equivalent to the tracer d
tributions which are used to characterize fluid transp
through porous solids@14,15#. In particular,ct(Z) displayed
in Fig. 2 of Ref.@14# correspond exactly to thePD(Z) deter-
mined by the NMR experiments described in this paper
2

e

e
in
e

-

s

c

e

in
-
-

e-
of
-
or

let

,

s

-
s
f

-
rt

d

elsewhere@16–25#. As with ct(Z), which allow the calcula-
tion of tracer RTD’s,cZ(t), so thePD(Z) give access to the
equivalent NMR determined RTD’s. The formal equivalen
requires the assumption that the distributed labeling of m
lecular positions by NMR is the same as the infinitely th
infinite area transverse labeling assumed in tracer meas
ments. All that is required is that, as the NMR method m
sures displacements, the distribution of initial labeling is re
resentative of all locations in the fluid phase. Based on th
nonlocal formulation of the transport problem in porous s
ids, Koch and Brady calculatedct(Z) andcZ(t) for a Peclet
number of 100 and a solids fraction of 0.5 which are simi
to those used in this study. It is clear from previously pu
lished data, e.g., Refs.@18–25# that the calculatedct(Z)
shown in Fig. 2 of Ref.@14# show little agreement with thos
observed experimentally. We have used our data to calcu
RTD’s for the 600-mm glass sphere bed using the same d
nitions of variables as used by Koch and Brady@14#. Figure
9 shows these NMR-derived RTD’s for the flow rate corr
sponding to Pe5245 (Pe85150 according to the screening
length corrected definition of Ref.@14#! andF50.55. It can
be seen by comparison with Fig. 3 in Ref.@14# that there is
little similarity, even qualitatively, with the predictions of th
theory.

D. Correlation between displacements inX and Z

The principal aim of this paper is to show that our NM
experiment gives direct information on correlations betwe
axial and transverse components of the fluid transport.
centered second moments are generally found to be la
along the pressure gradient than perpendicular to it. In f
they show a mutual dependence for long times when
limit of Gaussian propagators is reached. However, as
be pointed out later, the momentsŠ(X2^X&)2

‹ and
Š(Z2^Z&)2

‹ are not correlated forD→` in the strict math-
ematical sense, despite this proportionality.

The centered second moments represent averaged qu
ties for the whole system, and do not sufficiently describe
actual connection between displacements in both directio

FIG. 9. The residence time distributionct(Z8) as a function oft
for flow through a 600-mm glass bead pack at 14 ml/min. Th
definitions of Z8 and t are dimensionless as given in Ref.@14#:
Z85Zk21/2 andt5^Z&k21/2, wherek1/25

2
9 F21a2 is the screening

length. The corrected Peclet number according to Ref.@14# is Pe8
5v* k1/2/D5150.
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In particular, one would like to know if, for a given encodin
time, a spin-bearing particle that has traveled a larger-th
average distance in the flow direction is also expected
have a larger-than-average displacement in the perpendi
direction. In other words: are large displacements inZ cor-
related with large displacements inX or not?

A way to gain insight into this question is to compute t
second momentŝX2& as a function ofZ. One thereby
chooses a subset of particles that have reached, by diffe
pathways, a displacement betweenZ andZ1dZ after a time
interval D. The inverse approach of plottingŠ(Z2^Z&)2

‹ vs
X is also justified, but less illustrative.

Figure 10~a! shows a superposition of the experimen
data for 42 ml/min, as compared to the simulations in F
10~b!. In Fig. 10~a!, it can be seen that^X2& ~which is iden-
tical to the centered second moment! is only weakly depen-
dent onZ for small Z as this region is dominated by sel
diffusion which is isotropic. The slope then rise
monotonically toward largerZ with all values ofD achieving
an approximately common slope in the log-log plot.

The fact that the curves for different times are nearer
each other in the simulated data as compared to the ex
mental ones is a consequence of the sharper and more
sistent peak around zero already mentioned. It has the e
that ‘‘static’’ and ‘‘flowing’’ particles are more strongly
separated than in the experimental case. Thus the diffus
dominated region~where^X2& scales with time and therefor
with ^Z&) is restricted to a smallerX andZ.

FIG. 10. Mean-squared displacement perpendicular to the
direction, ^X2&, as a function of displacementZ. The moments
have been calculated from the two-dimensional propagators.~a! Ex-
perimental data as shown in Fig. 3.~b! Simulated data as shown i
Fig. 5.
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From the simulation it is clear that for displacemen
much larger than the diffusion range,^X2& follows a power-
law dependence ofZ. The slope in the log-log plot is found
to be 0.7460.02 both in the experimental and the simulat
data for Z*500 mm. While for small Z, isotropic self-
diffusion is dominating andX andZ are uncorrelated, there
remains a positive correlation between both quantit
throughout the full range ofZ.

The quantification of correlations for the entire range
displacements is necessarily connected with the reductio
specific properties onto a single characteristic figure. T
proper mathematical definition of the correlation coefficie
which relates two parametersA and B, rA,B , is given as
follows:

rA,B5
cov~A,B!

AVar~A!AVar~B!
, ~22!

where covariance and variance are defined as

cov~A,B!5^AB&2^A&^B&, ~23!

Var~A!5^A2&2^A&2, ~24!

and wherê A&, for example, is given by

^A&5E
2`

` E
2`

`

P~A,B!A dA dB. ~25!

Both experimental and simulation results are subject
noise that makes the calculation of higher moments incre
ingly inaccurate. One is therefore interested in the simp
possible correlation relations, such as

r uXu,Z , r uXu,Z2, rX2,Z , rX2,Z2.

It was found that the general features of these quantities
their evolution with time and flow rate remain the sam
while only the absolute values are changed slightly.

Figure 11~a! compares the correlation coefficientsrX2,Z
for the experimentally obtained propagators. Correlations
generally larger for high flow rates, i.e., larger Peclet nu
bers. Furthermore, an increase of the correlation coeffic
with ^Z& is found for 4.8 ml/min, a decrease for 42.0 ml/mi
and an intermediate behavior showing a maximum for 1
ml/min. Despite an estimated error of up to610% in the
absolute values, the maximum seems to appear for^Z& be-
tween 100 and 300mm for 14.0 ml/min.

The interpretation becomes clearer by considering
rX2,Z derived from the simulated propagators. These
shown in Fig. 11~b!, and cover a wider range of displace
ments than the experimental data. The dependence on
rate is obvious. A maximum is clearly seen at displaceme
near to the bead radius. Additional simulations for 4.8 m
min have been run with self-diffusion coefficients ofD0/100
and D0/10000 in order to reveal the effects of flow alon
and these are included in Fig. 11~b!.

From the behavior of the correlation coefficient, the fo
lowing interpretation can be drawn. At very short times, p
ticle displacements are dominated by Brownian motion
scales much smaller than the bead size. This motion is
dom and isotropic, and generates no correlation between

w
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placements inX and Z. For larger times, the motion is in
creasingly influenced by the velocity field in the pore spa
with its preferred direction along the pressure gradient. T
velocity field represents the way fluid particles probe
spatial structure of the pore space under the constraints o
boundary conditions. The local velocity distributions in
pack of glass spheres were discussed in Ref.@41#; regions of
large and small local velocities could be identified whi
indicate the position of the particles with respect to the m
flowlines. It is clear that larger Peclet numbers allow few
particles to change between these pools in a given time
sulting in larger correlation coefficients at any given d
placement. For very small self-diffusion coefficients, m
tions become dominated by the flow field, as is clear fr
Fig. 11~b!.

At a characteristic length scale, fluid molecules will ha
to change their flow direction or exchange between the po
of large and small velocity; the persistence length of
streamline must be connected to the typical structural siz
the system, and for very large displacements it becomes
creasingly unlikely for a particle to flow in its initial direc
tion. One would therefore expect a maximum of the corre
tion coefficient that is intimately related to the characteris
length scale, which is given by the bead size in this syst
Note that in the complete absence of Brownian motion,
correlation coefficient will start off as a constant, the value

FIG. 11. ~a! Correlation coefficientsrX2,Z for experimentally
obtained two-dimensional propagators. Errors bars are estimat
10% from the scattering of the computedr values.~b! Correlation
coefficients rX2,Z for two-dimensional propagators obtained b
simulation. Open symbols indicate simulations at reduced s
diffusion coefficients ofD0/100 andD0/10 000, respectively.
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which is solely determined by the spatial structure of t
velocity field. It will start to decrease when the average d
placement̂ Z& exceeds the persistence length, the obser
maxima in Figs. 11~a! and 11~b! being a consequence of th
combined effect of Brownian motion and flow.

For very large displacements, a complete loss of corre
tion is expected as the dispersion in bothX andZ becomes
determined by the pseudodiffusive character of the displa
ments. Note that although the latter condition is almost m
for the largest displacements in the simulation, which is
dicated by a Gaussian-like shape of the marginal propa
tors, the correlation coefficient has not yet fallen close
zero.

The peak in the correlation coefficient is remarkably w
pronounced in the experimental data, given the fact tha
polydispersity of the real glass beads exists. However, w
the absolute values ofr in the experimental and in the simu
lated data sets are comparable for the largest flow rate,
dependence on the Peclet number is more pronounced in
experiment. Given thatD, v* , and the bead diameter ar
identical, and that edge effects are not expected to play
role for the displacements observed, deviations of the sim
lated from the real velocity field must be assumed wh
affect small flow rates most. This feature might be connec
to an observation of the peak near zero displacement th
more persistent in the simulation than in the experimen
results: a larger fraction of particles possessing both smaX
and smallZ has to influence the absolute value of the cor
lation coefficients.

The observation of a positive correlation betweenX andZ
suggests the concept of a preferential flow direction, or, m
precisely, a direction which is more probable to find th
others. For example, the probability density of particles
maining nearX'0 decreases for larger displacementsZ. In
order to visualize the geometrical properties of this corre
tion, we write the joint probability density as the sum of th
product of its marginals and a function that incorporates
correlation between the measured quantities:

PD~X,Z!5PD~X!PD~Z!1CD~X,Z!. ~26!

The correlation matrixCD(X,Z) contains only zero element
if displacements inX andZ are mutually independent. Thi
case is realized for Brownian motion in an isotropic syst
where

P~X,Z!5
1

2psXsZ
exp@2~X2X0!2/~2sX

2 !#

3exp@2~Z2Z0!2/~2sZ
2!#.

However, if X and Z are correlated, a plot ofP(X,Z)
2P(X)P(Z) renders the correlation matrix directly.

This operation has been performed for the propagator
Fig. 4, and is presented in Fig. 12 for the experimental d
Simulated data result in equivalent plots. Compared to
actual propagators in Fig. 4, the difference propagators s
a much larger amount of structure. One observes a four
symmetry: a positive peak for smallX andZ develops into a
narrow negative region for largeZ and smallX as well as for
largeX and smallZ. For intermediate values ofX andZ, the
sign of CD(X,Z) is again positive, and its local maximum

to
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FIG. 12. Difference propagatorCD(X,Z)5PD(X,Z)2PD(X)PD(Z) for experimental data at a flow rate of 42.0 ml/min, axis scales
mm. Contour lines are drawn from approximately60.05 of the peak intensity in linear spacing; numbers indicate probability densitie
104 m22 using the normalization of Fig. 4. Positive values are indicated by solid lines, and negative values by dashed lines. Dot
representCD(X,Z)50. Data are cut at points wherePD(X,Z) is typically below 0.02 of its peak value to avoid contributions by noise; t
determines the outer bounds of theCD(X,Z)50 line.
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describes a line that is curved in the flow direction. The
general features are independent of the parameters in
experiment or the simulation and have been observed be
for flow in porous sandstone rocks@27#. It is also found for
short-time simulations for average displacements down
few micrometers. However, for a diffusion coefficient r
duced by a factor of 104 in the simulations, the feature
become much sharper, revealing the initial state of the ve
ity field before spreading due to self-diffusion or chang
in local flow directions lead to a broadening in the corre
tion matrix picture. The absolute magnitude in the corre
tion plot, on the other hand, decreases with longer encod
times ~see numbers at contour lines in Fig. 12! due to the
general spreading of the probability density function. T
is analogous to the spreading of the propagatorPD(X,Z)
itself.

The correlation matrix can be understood as a funct
that identifies regions of correlations larger or smaller th
the reference statePD(X)PD(Z) which formally defines the
independence of the variablesX andZ. However, as pointed
out by Wadsworth and Bryan@42#, while the use of a func-
tion such asCD(X,Z) gives a clear answer to whether th
variablesX and Z are correlated or not, the ‘‘mathematic
representation of the relationship, once demonstrated, i
art in itself.’’ That said, it is clear that, because of norm
ization of the propagators in general, the integral o
CD(X,Z) must be zero, which necessitates a particular sy
e
the
re
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c-
s
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-
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s
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n

an
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metry and a sign change at certain coordinates. A simpli
view of CD(X,Z) might lead to an interpretation of th
ridges of positive values as the lines of preferential displa
ments. One would then conclude that fluid molecules wo
preferably flow along a certain angleumax relative to theX
axis, while, for u'0° and u'90°, displacements are les
likely to be found. One possible definition ofumax employs
determining the maximum of the radial first momen
^R(u)&, with respect to the origin at$X,Z%50. Whileumax is
not found to be significantly influenced by the flow rate f
the case investigated in this study, it is certainly a function
the ratio of the average displacements inz andx directions.
We are currently considering in more detail the significan
of CD(X,Z) and the role of the reference statePD(X)PD(Z)
in its definition and physical interpretation.

E. Comparison with model systems

Another approach towards a better understanding of
meaning of correlations between displacements can be
tained by performing independent simulations and assum
model propagators. One case which can be solved ana
cally assumes a Gaussian propagator alongX for each point
in Z, the variance of which scales with a power ofZ:
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Aplb~a11!/2GS a11
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Th
This propagator fulfills the normalization cond
tion **P(X,Z)dX dZ51 when defined for positive
X and Z only. The general moments are repr
sented by
^XnZm&5

ln/2b~m/2!1~a/2!nGS n11
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a11

2 D
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the correlation coefficients are given by
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ent
where m5(a11)/2. For a50, all correlation coefficients
are equal to zero, as expected. Note that the correlation
not depend on the parametersb and l. The dependence o
rX,Z andrX2,Z on a are shown in Fig. 13.

Numerical computations of this model propagator ha
been performed employing a MatLab routine; the result
moments and correlations were found to match with the t
oretical values within less than 1%, depending on the re
lution of the calculation. The findings in Sec. VI D, shown
Fig. 10, suggest 2a50.74. The propagator and the correl
tion matrix for this parameter are shown in Fig. 14. T
similarity to the bead system investigated in this study
striking at first sight. The main difference between mod
and experiment lies in the short-displacement behavior.
marginalP(Z) of the distribution of Eq.~27! has the form

FIG. 13. Correlation coefficientsrX,Z and rX2,Z for the model
propagator described in the text@Eq. ~27!# as a function of the
parametera.
do

e
g
-

o-

s
l
e

Zae2Z2
. Although similarities between the experimental

obtained propagatorP(Z) and this distribution might exist
the persistent peak of high probability density near the ori
cannot be represented. Also, the expected Gaussian sha
P(Z) for long times is not realized by the model. Neverth
less, the general properties of the correlation matrix coinc
reasonably well with both the experimental and simula
data presented above. Tentative analyses of flow thro
other porous media lead to similar characteristics, but w
an exponent 2a considerably different from the one obtaine
for packed glass beads@43#. A model propagator in this or a
modified form can therefore serve for the discussion a
comparison of general features of the spreading processX
and Z, while certain details such as the small-displacem
and long-time behavior contain additional information abo
the characteristics of the specific system.

In an attempt to gain some further insight into the infl
ence of local pore geometry on the form of the joint pro
ability density, we have analyzed the probability densit
generated by the simple two-bond capillary model, descri
earlier, for a series of values of the anglea in the range
0° – 80° with Dvmax(u50)52l. Clearly the dependency o
the probability density ona will be confined to regions
where the displacement exceeds the lengthl of the initial
capillary; as the probability density is small in those regio
we expect the linear correlation coefficient and first mom
to be relatively insensitive to variations ina. We have there-
fore calculated the ratioŠ(X2^X&)2

‹/Š(Z2^Z&)2
‹ as a func-

tion of a. We find for this model that

Š~X2^X&!2
‹

Š~Z2^Z&!2
‹

50.28710.178~12cosa!. ~30!
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To compare this result to our experimental and simula
data, it is necessary to relate the bond lengthl to the char-
acteristic length scale in our sample. We takel 5L/3; this
choice, although inevitably to some extent arbitrary, is phy
cally reasonable and gives values for^Z& andŠ(Z2^Z&)2

‹ in
the ranges 58–65mm and 4000– 6100mm2, respectively,
consistent with the data presented in Fig. 7~a!.

The second-moment ratios for our experimental and be
pack simulation data are almost independent of^Z& in the
range of^Z& under consideration. They do however depe
upon Peclet number, ranging from 0.5 for Pe588 to an ap-
parent limit of 0.4 for Pe.250, when spreading is dominate
by convective transport. The limiting value is the most a
propriate for comparison with our model, which neglects
fects due to diffusion; Eq.~30! then yields a value of'70°
for a. That value is not unreasonable–for example, in a h
agonal close-packed structure fluid elements experienc
change in direction of 72° between entering and leavin
tetrahedral ‘‘pore.’’ However, in view of the simplicity o
our model and the fact that random packing must lead t
distribution of pore geometries, we must regard this resul
merely illustrative of the sort of pore scale structural info
mation which could be extracted from the form of the jo
density at small displacements.

VII. CONCLUSIONS

The joint probability distribution for displacements para
lel and perpendicular to the net flow direction have be

FIG. 14. ~a! Two-dimensional propagatorP(X,Z) for the model
described in the text@Eq. ~27!#; 2a50.74. Contour lines are draw
from 0.05 of the peak intensity in linear spacing.~b! Correlation
matrix C(X,Z)5P(X,Z)2P(X)P(Z) for the plot in ~a!. Contour
lines are drawn from60.005 of the peak intensity in nonlinea
spacing. Positive values are indicated by solid lines, and nega
values by dashed lines. Dotted lines representC(X,Z)50.
d

i-

d-

d

-
-

-
a

a

a
s

n

determined experimentally for water flow in a system
packed glass beads. Numerical simulations have been ca
out for a wider range of average displacements than
accessible by experiment.

The simulations, obtained by successively generatin
random packing of spherical beads, solving the Stokes eq
tion, and monitoring of the displacements of particles ra
domly distributed in the pore space, have been shown
agree reasonably well with the experimental results. The
jor part of the deviations can be explained by a differe
spreading behavior of a fraction of particles remaining n
their starting positions.

The evolution of second moments of the displacem
distributions as a function of flow rate and encoding tim
shows the crossover from a regime dominated by Brown
motion to an asymptotical approach toward propagators
Gaussian shape. The limiting dispersion for long times
reached much earlier inX compared toZ. The dependence
of the dispersion coefficientD* on the Peclet number sug
gests an intermediate behavior where the mixing proces
dominated by velocity variations but contains a no
negligible contribution from self-diffusion.

The mean-squared displacement perpendicular to the
direction follows a power-law dependence onZ for largeZ.
From the full joint probability propagator representation,
correlation betweenX2 and Z is found that decreases fo
average displacements in the flow direction^Z&, larger than
a characteristic length equivalent to the bead radius, w
decreasing again for much smaller^Z& due to the dominating
effect of isotropic self-diffusion.

A plot of the correlation matrixCD(X,Z)5PD(X,Z)
2PD(X)PD(Z) possibly indicates preferential directions fo
displacements by larger-than-average correlation values f
specific region of displacements. The shape of this reg
changes with increasing flow time. Correlation matrices
similar shape can be generated by appropriate model pr
gator functions. Numerical simulations have shown that
peculiarities of the matrix shape reflect characteristic str
tural details such as size and orientation of microcapillar
Experiments and theoretical analyses are currently being
formed to describe a wider range of porous systems by
properties of fluid flow through their pore space@43#. Two-
dimensional propagators can be employed to impro
the understanding of how fluids spread in a porous netw
and how this spreading is governed by parameters s
as self-diffusion coefficients and flow rates, on the o
hand, and porosity, permeability, and tortuosity on the ot
hand.

ACKNOWLEDGMENTS

One of the authors~S.S.! is indebted to the Deutsche Fo
schungsgemeinschaft~DFG!, ~Grant No. Sta 511/1-1! and
the Training and Mobility of Researchers~TMR! Programme
of the European Union~Grant No. ERBFMBICT961836!,
for financial support.

ve



-

ra

lt,

e

T.
A

nd

le

.

gn.

n.

D.

ul-

.

J.

rt

-

PRE 58 6221SPATIAL CORRELATIONS AND DISPERSION FOR . . .
@1# J. J. Fried and M. A. Combarnous, Adv. Hydrosci.7, 169
~1971!.

@2# A. L. Dullien, Porous Media: Fluid Transport and Pore Struc
ture ~Academic, New York, 1979!.

@3# J. H. Cushman,Dynamics of Fluids in Hierarchical Porous
Media ~Academic, New York, 1990!.

@4# H. D. Pfannkuch, Rev. Inst. Fr. Pe´trole 18, 215 ~1963!.
@5# D. J. Gunn and C. Pryce, Trans. Inst. Chem. Eng.47, 341

~1969!.
@6# R. Aris, Proc. R. Soc. London, Ser. A235, 67 ~1956!.
@7# G. I. Taylor, Proc. R. Soc. London, Ser. A219, 186 ~1953!.
@8# D. L. Koch and J. F. Brady, J. Fluid Mech.154, 399 ~1985!.
@9# D. A. Edwards, M. Shapiro, H. Brenner, and M. Shapi

Transp. Porous Media6, 337 ~1991!.
@10# H. P. Amaral Souto and C. Moyne, Phys. Fluids9, 2253

~1997!.
@11# J. Sallès, J.-F. Thovert, R. Delannay, L. Prevors, J.-L. Auriau

and P. M. Adler, Phys. Fluids A5, 2348~1993!.
@12# E. Charlaix, J.-P. Hulin, and T. J. Plona, Phys. Fluids30, 1690

~1987!.
@13# A. Ding and D. Candela, Phys. Rev. E54, 656 ~1996!.
@14# D. L. Koch and J. F. Brady, J. Fluid Mech.180, 387 ~1987!.
@15# D. L. Koch and J. F. Brady, Chem. Eng. Sci.42, 1377~1987!.
@16# P. T. Callaghan,Principles of Nuclear Magnetic Resonanc

Microscopy~Clarendon, Oxford, 1991!.
@17# J. Kärger and W. Heink, J. Magn. Reson.51, 1 ~1983!.
@18# K. J. Packer and J. J. Tessier, Mol. Phys.87, 267 ~1996!.
@19# M. H. G. Amin, S. J. Gibbs, R. J. Chorley, K. S. Richards,

A. Carpenter, and L. D. Hall, Proc. R. Soc. London, Ser.
453, 489 ~1997!.

@20# J. D. Seymour and P. T. Callaghan, AIChE. J.43, 2096~1997!.
@21# H. Van As and D. van Dusschoten, Geoderma80, 389 ~1997!.
@22# J. J. Tessier and K. J. Packer, Phys. Fluids10, 75 ~1998!.
@23# L. Lebon, L. Oger, J. Leblond, J. P. Hulin, N. S. Martys, a

L. M. Schwartz, Phys. Fluids8, 293 ~1996!.
@24# J. J. Tessier, K. J. Packer, J.-F. Thovert, and P. M. Ad

AIChE. J.43, 1653~1997!.
,

r,

@25# R. S. Maier, D. M. Kroll, Y. E. Kutsovsky, H. T. Davis, and R
S. Bernard, Phys. Fluids10, 60 ~1998!.

@26# D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E55,
1959 ~1997!.

@27# K. J. Packer, S. Stapf, J. J. Tessier, and R. A. Damion, Ma
Reson. Imaging~to be published!.

@28# E. J. Fordham, S. G. Gibbs, and L. D. Hall, Magn. Reso
Imaging12, 279 ~1994!.

@29# E. O. Stejskal and J. E. Tanner, J. Chem. Phys.42, 288~1965!.
@30# A. J. Lucas, S. G. Gibbs, E. W. Jones, M. Peyron, A.

Derbyshire, and L. D. Hall, J. Magn. Reson., Ser. A104, 273
~1993!.

@31# IDL Interactive Data Language, Research Systems Inc., Bo
der ~1995!.

@32# R. Lemaitre and P. M. Adler, Transp. Porous Media5, 325
~1990!.

@33# S. R. McDougall and K. S. Sorbie, Petroleum Geosci.3, 161
~1997!.

@34# J. Bear,Dynamics of Fluids in Porous Media~Academic, New
York, 1975!.

@35# R. Kimmich, S. Stapf, A. I. Maklakov, V. D. Skirda, and E. V
Khozina, Magn. Reson. Imaging14, 793 ~1996!.

@36# L. L. Latour, P. P. Mitra, R. L. Kleinberg, and C. H. Sotak,
Magn. Reson., Ser. A101, 342 ~1993!.

@37# A. Compte, R. Metzler, and J. Camacho, Phys. Rev. E56,
1445 ~1997!.

@38# N.-W. Han, J. Bhakta, and R. G. Carbonell, AIChE. J.31, 277
~1985!.

@39# P. M. Adler, Porous Media. Geometry and Transpo
~Butterworth-Heinemann, Stoneham, 1992!.

@40# D. R. F. Harleman and R. R. Rumer, J. Fluid Mech.16, 385
~1963!.

@41# Y. E. Kutsovsky, L. E. Scriven, H. T. Davis, and B. E. Ham
mer, Phys. Fluids8, 863 ~1996!.

@42# G. P. Wadsworth and J. G. Bryan,Introduction to Probability
and Random Variables~McGraw-Hill, New York, 1960!.

@43# S. Stapf and K. J. Packer~unpublished!.


