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by pulsed field-gradient NMR
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The two-dimensional displacement joint probability den$ty(X,Z) for water flowing through a bed of
glass beads has been measured by means of pulsed field-gradient nuclear magnetic resonance. The simulta-
neous particle displacementsand Z perpendicular and parallel to the pressure gradient, respectively, at a
given encoding timé\, are obtained from an experiment employing orthogonal magnetic field gradients. The
resulting probability density distribution is compared to numerical simulations of flow through an equivalent
system of randomly deposited monodisperse spheres. The dependence of the centered second m¥ments in
and Z on flow time is discussed for the experimental and simulated data. A crossover from a time scale
dominated by Brownian motion toward a behavior determined by the convective flow and velocity fluctuations
is observed. The mutual dependence between displacements perpendicular and parallel to the flow direction is
revealed in the evolution of a correlation coefficiggt ;. This coefficient is found to increase for short times
and to decrease for larger displacements, with a maximum at an average displacement corresponding to the
bead radius. As a means of displaying the cause of these correlations, a correlation probability density
CA(X,Z)=P,(X,Z)—P,(X)P,(Z) is suggested, wher,(X) andP,(Z) are the marginals dP,(X,Z). A
plot of this matrix renders zero in the absence of correlations, but produces a characteristic pattern of positive
and negative regions when displacementX iare correlated with those ib. The time evolution of this pattern
is discussed and compared to the shape of model propagators obtained from an analytical function and a
numerical simulation for a simplified capillary array, respectivé§1063-651X98)05611-6

PACS numbgs): 47.55.Mh, 81.05.Rm, 47.1%j, 83.70.Gp

. INTRODUCTION known to be atr, atty. This Green function was used to
express the average mass flux as a function of the initial

Transport and dispersion of fluid phases and solutegoncentration distribution, with the resulting expression be-
within porous solid structures is of importance in a wideing rearranged and a time-dependent dispersion tensor intro-
range of areas such as oil reservoir appraisal and managguced, which generalizes the classical local dispersion. So
ment, aquifer behavior, distillation and filtration processesfar, this has been worked out only for fluid transport through
heterogeneous catalyst bed design and performance, polli-dilute suspension of spheres, although it was claimed that it
ant dispersal and recovery in the environment, etc. The fieldould be extended to larger solid phase volume fractions.
has an extensive literature, and a wide range of experimentsxperimental data from closely packed beds of sphgt8k
have been performed, many of which have been summarizeghve shown only modest and qualitative agreement with this
in three major referencegd—3], with historically important  theory.

compilations and data being also found in R¢#5]. Few Of the many experimental approaches to the characteriza-
theoretical results are available to describe these fluid transion of fluid transport in porous solids, nuclear magnetic
port processes, except for the case of Poiseuille fi6yf]  resonancgNMR) has a number of significant advantages.
and for dilute suspensioni$8]. Numerical results for long Principal among these is the fact that NMR studies the fluid
time behavior have been obtained for t}8;10] and three-  directly and is able to investigate optically opaque systems,
dimensional[11] structures. Some consideration has beenryhich constitute the majority of those of interest. A particu-
given to the early time dispersion behavior of solutes, thdarly powerful NMR method is that based on the use of mag-
so-called non-Fickian or nonlocal regime, both experimennetic field-gradient pulses to determine the statistics of
tally [12,13 and theoreticallj14,15. In the latter approach, nuclear spin(and, hence, moleculgrdisplacementq16].
the convection-diffusion equation was solved symbolicallySuch pulsed gradient spin eciBGSB NMR methods are
in terms of a Green functioR, which gives the probability based on the propagator formali$v] which directly gives
of finding a tracer at position at timet, given that it was P,(R), the probability distribution of displacement®
=r(A)—r(0) in time A. This method has been used experi-
mentally to characterize the diffusive-convective transport
* Author to whom correspondence should be addressed. FAXthrough a number of model porous solifiE8—25. The
+44-115-951-3562. availability of increased computational power has made pos-
Electronic address: pczssx@unix.ccc.nottingham.ac.uk sible simulations with sufficient spatial and temporal resolu-
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FIG. 1. Pulse sequence used for measuring two-dimensional average propagators. rf hard pulses are given by black rectangles, and the
slice selective pulse is indicated by its sinc shape. Gradient pulses in dark gray are encoding gradients, and crusher gradients to remove
residual phase coherences are drawn in light gray. The encoding gradients are applied simultaneously in orthogonal directions.

tion to compare directly with experimef23—-25, making proportional to its position at time 0 and to the area of the
use of algorithms which generate realizations of statisticagradient,

porous system§l1,26. All measurements reported to date

have determine® ,(R) for R either parallel or transverse to #i(9,6,11(0))=8w(ri(0))=8{yBo+ yg-1;(0)}, (1)

the pressure gradient driving the net flow.

However, to our knowledge, no attempt has yet bee
made to correlate displacements parall®l and perpendicu- ) ) 2
lar (X) to the pressure gradient quantitatively with each Otheldenotes the static _“?agne“c fiela(r;) is the Lgrmor fre-
for flow in a porous system, either by experimental or com-duency. at the posmomi. After an evqlut|on t|meA,.the .
putational methods. Preliminary results on flow through a]refocusmg gradient res_ults in a negative phase shift which
porous sandstone were presented in R27]. In this paper €aves the resultant shift
we determine, by PGSE NMR, the two-dimensional joint A — Fr (At _ D
probability densityP ,(X,Z) for water flow in a bed of ran- $i(A)=y8g-{ri(4) ~1i(0)} = yog-Ri(4), @
domly deposited glass beads. The time evolution of thigyhere R;(A)=r;(A)—r;(0) indicates the displacement for
propagator, as well as that of the moments and correlatiogarticle i during the observation timé. The total signal

coefficients connected % andZ, are described and com- amplitude is obtained by summation over all spins, equiva-
pared with extensive computer simulations. lent to the integral

Jvhere|g| and 5 are the strength and duration of the applied
gradient, respectivelyy is the gyromagnetic ratio, anf,

Il. THEORY SA(q):f Pa(R)exg{i27q-R(A)}dR, )

To obtain the two-dimensional propagator, we have modi-
fied the alternating pulsed field-gradient stimulated echqyhere q=(27) 1ydg, and the average propagatBr(R)
(APGSTE VerSiC'm'[ZS] of the PGSTE Sequen(ﬁég]. In ad- ] :fp(ro) P(r,A;rO)drO_ P(ro) is the probabmty density for
dition to the original sequence, a second set of gradiendtarting positions, whild(r,A;r) is the conditional prob-
pulses has been added; gradients in both orthogonal diregpility for displacements from, tor in time A, equivalent to
tions are switched simultaneougisee Fig. 1 the Green function mentioned abojist, 15).

The splitting of the defocussing and refocussing gradients The average propagatér, (R) can therefore be obtained
by insertion of a rf pulse of flip angle minimizes the effect directly by Fourier transformation d8,(q) with respect to

qf moIeCl_JIar displ_acem_ents through _the internal magnet_iql. Under the circumstances of this studygonsists of two
field gradients, which arise from the differences of magneticythogonal components, andq, ; thus

susceptibility existing between the porous solid matrix and

the saturating fluidi30]. As described in Ref.28], offsetting q=Kka,+ iy, (4)
the phase of the seconef2 pulse by 90° allows discrimina-
tion between positive and negative displacements. wherek andi are unit vectors along andx, respectivelyz

Each nuclear spim experiences a phase shifi that is is parallel to the pressure gradient driving the fluid flow, and
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X is perpendicular to it. The two-dimensional average propa-
gator P,(X,Z), for displacementx and Z, is then calcu-
lated by successive fast-Fourier transform in both directions.
It must be mentioned that E@3) is only applicable if the
duration of the gradient pulse is negligible compared to the
experimental time §<A).

The boundary conditions imposed experimentédige be-
low) ensure that there is no net radial flow and the system is
therefore axially symmetric. The propagator for displace-
ments in thex-direction,P,(X), is therefore identical for all
directions perpendicular to the flow axis.

IIl. EXPERIMENT

The NMR measurements were carried out using &)GE
CSI spectrometer operating for proton resonance at 85 MHz,
the field being provided by an Oxford Instruments 85/310
horizontal bore magnet equipped with room temperature
shims and S-150 Accustar actively shielded gradient coils
providing gradients of up to 0.2 T M. Phase cycling of the
rf pulses[28] was used to minimize the effects of back-
ground gradients and dc offsets. Y

A sample of glass beads of 68&0-um diameter{Jen-
cons (Scientifig Ltd., Leighton Buzzard, UK, Cat. No.

H102/1/126 was prepared by filling a glass tube of 27.2-mm

inner diameter and 120-mm length with water and adding the

wet g|a55 beads and water Suspension S|0w|y' a||owing the FIG. 2. Example of a reconstructed packed bed of monodisperse
beads to sediment. Air bubbles were removed by stirringPheres.

during the filling process. The tube was fitted at both ends

with sintered glass disks to ensure an even distribution ofvere compared to one-dimensional propagators obtained un-
streamlines over the whole cross-section. The sample wader identical conditions but with a higher resolution of 64 or
connected, via a 2-m narrow-bore pipe, to a precision pumé28 points and with symmetrical gradient steps covering the
(Pharmacia P50which was operated at constant volume range —Qgmax.-.-Gmax- The propagators matched satisfacto-
flow rates of 4.8, 14.0, and 42.0 ml/min, respectively. Therily. All calculations were performed using interactive data
relaxation time of the flowing water was reduced T9  language(IDL) [31].

=600 ms by adding coppgl) sulfate, allowing a pulse se-

guence repetition time of 3.3 s. IV. SIMULATIONS

Experiments were performed using the APGSTE pulse
sequence given in Fig. 1. The signal was acquired using a TO generate an adequate representation of the real porous
slice-selective soft pulse with an effective axial slice thick-medium, random sphere packing has been simulated by suc-
ness of 60 mm located symmetrically at the center of thecessive deposition of grains in a “gravitational” field. The
sample. This was used in order to avoid edge effects whicANth grain is introduced at a random location above the bed of
could arise from the inflow and outflow of water at the endsN—1 grains already deposited, and is allowed to fall until it
of the sample. Two-dimensional data sets were obtained bfgaches a local minimum of its potential energy. A more
stepwise variation of the strength of the pulsed gradients sidetailed description of the deposition process is found in
multaneously applied parallel and perpendicular to the flowRefs. [26] and [24]. A random packing of monodisperse
direction. Data were acquired using—2 andn,— 2 evenly ~ spheres was generated by this algorithm, incorporating peri-
spaced positive and two negative gradient values, respe@dic boundary conditions along the two horizontal ateese
tively, whereny andn, denote the total dimensionality % Fig. 2. The sample is made &2 elementary cubes of side
andZ directions, and were chosen as powers ¢fypically ~ a=60um, corresponding ta of the bead diameter, with
ny=16, n,=32 or 64. Measurements at the two negative Nc=64. The porositye of the void space was chosen to be
gradient values served to determine the zgrphase shift €=0.44. The bed permeabilit¢ was calculated by solving
which enabled the reconstruction of the full data set of di-the Stokes equations, and was found tokibe 7140 Darcy.
mension (2yx—4)X(2n,—4). This matrix was then Fou- In the next step, the velocity field was generated by solv-
rier transformed numerically after zero filling to twice the ing the Stokes equations
original size, and subsequently phase corrected. The margin-
als P, (X) andP,(Z) of the resulting propagatd?,(X,Z), Vp=uV?, V.v=0, (6)
defined as

wherev, p, andu are the velocity, pressure, and viscosity of
the fluid, respectively, and=0 on the surface of the wetted

PA(X):J Pa(X,2)dZ, P(Z):f PAX.2)dX. () splid. The symmetric permeability tenséronly depends on
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the geometry of the system, and describes the relation béaries of length and uniform radius, isotropically distributed
tween the macroscopic pressure gradieptand the seepage in orientation. 500 particles are assigned to the start of each

velocity v: capillary att=0. The velocity vectors are oriented in the
direction of the capillary, and have magnitudes taken at ran-

— 1 — dom from the usual uniform distribution appropriate to lami-

V=0 KVp. () nar flow within a circular pipe. To represent the axial nature

of the system, we make.,=Vy COS 6, whered is the angle

The numerical method used to solve these equations is ougetween the capillary and the axis. Coordinates of each
lined in Ref.[32]. It assumes low Reynolds numbers which particle are then calculated at various tindesThe important
are guaranteed by the experimental conditions employed ifiXtension of the model from that in R¢1L8] is that particles
this study. which reach the end of their starting capillaries within
The determination of the average propagator is performeéfansfer to the start of another capillary in which they con-
by inserting a large number of particles uniformly distributedtinue their motion. The orientation of this second capillary
within the pore space. For each elementary time step, thes on a cone of half-angle emanating from the end of the
particle’s position is calculated by adding convective angstarting capillary.« is constant for each calculation, but is
random diffusive displacements, where the geometrical revaried in order to give insight into the way in which locally
strictions of the solid matrix are taken into account. Thediscrete changes in flow direction influence the propagators
relative weight of these contributions to the displacement i€a(X,Z). The final results from all & 10° trials for eacha

expressed by the Peclet number are collected in a 64 64X 64 three-dimensional histogram,
and stored on disc for further processing. Although the use of
v*L such a model may be criticized as being based on a physi-
Pe= D’ 8 cally unrealistic representation of a real pore space, such

models and more sophisticated versions of them are widely

wherev* is the interstitial velocity and. is a characteristic used for investigating fluid transport in porous solj@s.

length, taken as being equal to the sphere diameter. The ran-
dom component is adjusted for a given Peclet number to be VI. RESULTS AND DISCUSSION
as large as possible in order to speed up the statistical con-
vergence, provided that the total elementary jump length is ) ) ] o )
kept smaller thara/2 [24]. The precision of these calcula- 1O investigate the influence of characteristic system di-
tions was carefully studied in RdfL1]; it was concluded that Mensions, both flow rate and encoding time were varied in
the calculations were reliable for Peclet numbers smallef€ experiments over a range of average displacements cov-
than 1000. ering two orders of magnitude from much less than the bead
Following this procedure, typically 2:610° particles ~Sizé of 600um to about 2 mm. The experiments were re-
were distributed randomly in the pore space of the latticeStricted by the required conditio/ 5>1; the smallest ratio
and were allowed to undergo flow and Brownian motion.used was larger than 8. On the other hand, encoding times

The self-diffusion coefficient was chosen as 2.1€Xceeding the longitudinal relaxation tiriig by far were not
x10"9 m?s %, the sphere diameter as<@0 * m, and the considered feasible due to the loss of signal intensity. This

interstitial velocity as 2.8510 4, 8.33x10°4, and 2.5 range, however, could be expanded in the simulations where

%1073 m s7L, respectively. The latter values correspond toSimilar restrictions do not apply. _
the flow rates used during the experiments, i.e., 4.8, 14.0, N addition, the flow rates had to be chosen to result in
and 42.0 ml/min, respectively. Additional simulations were If’ecle_t_ and Reynolds numbers Pe and Re to comply with the
run with smaller numbers of particles for time scales We”condltlons_ of the simulations. For the three_ flow rates_used in
above and below the experimentally accessible range, arfe experiment(4.8, 14.0, and 42.0 ml/min, respectivily
for which the self-diffusion coefficient was also varied over °n€ obtains Pe88, 245, and 720, where E() has been
several orders of magnitude. used withL=600um. Some simulations were run with
This simulation technique for obtaining the displacementhigher Peclet numbers but only for short times, where it has
distributions of the particles is, in a sense, strictly equivalenP€en found that the method used is still vdld]. The Rey-
to the formalism using the Green function which was devel-nolds number is defined as
oped by Koch and Brady14,15, since it amounts to the
solution of the convection-diffusion equation. For this rea-
son, it was not found necessary to rederive it within the
nonlocal formalism of Refd.14,15.

A. Experiments and simulations on spherical beads

v*¥L
Re= , 9
12

with v being the kinematic viscosity of the liquid. Re indi-
V. MODELING cates the ratio of inertia_l and viscpus fo_rces, gnd should not
be much larger than unity for optimal simulation results; in
In order to gain a more direct physical insight into the this case, it took the three values 0.15, 0.5, and 1.4, respec-
relationship between the features observed in the experimetively. For such low Reynolds numbers, the deviations of the
tally determined joint propagatof,(X,Z) and the underly- real velocity field from the solution of the Stokes equations
ing pore space characteristics, we have extended the simpéee expected to be very small.
model for flow in a porous solid which we introduced earlier ~Two-dimensional propagatofgint probability densities
[18]. The model used here consists of kylindrical capil-  for displacementX andz) for water flowing in the column
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FIG. 3. Two-dimensional average propagai®g(X,Z) for experimental data at a flow rate of 42.0 ml/min. All propagators are
normalized tof [P,(X,Z)dX dZ=1. Contour lines are drawn from approximately 0.05 of the peak intensity in linear spacing; numbers
indicate probability densities in $0n~2. Evolution timesA are as indicated.

of packed glass beads are shown in Fig. 3 for the 42.0-mMith small X displacements, particles possess, on average,
min flow rate, and for encoding times between 64 and 76Inuch larger displacements in the axial direction than perpen-
ms. The contour lines indicate regions of equal probabilitydicular to it. In contrast, for those particles which have trav-
density. Numbers at each line are given if b9 and the  eled large distances, the difference betwXeandZ is con-
propagator is normalized so thRf P, (X,Z2)dX dZ=1. The  siderably less pronounced. This deviation from a symmetric
propagator is symmetric iX, which is a consequence of the shape of the two-dimensional propagator already indicates a
experimental constraint that no net flow occurs perpendiculagonnection betweeX andZ displacements.

to the pressure gradient. In tize direction, the fraction of Another feature apparent in Fig. 3 is the position of the
particles experiencing negative displacements is very Sma'beak for each flow time\. While it remains near zero for

while a pronounced peak near zero displacement is found fQt, 1y times, it becomes shifted toward larger displacements

short times. . . . only for times of 340 ms and larger. A similar behavior has
It can be seen immediately that the lines of equal prob;

- . . L s -~ ~~“been found previously with one-dimensional measurements
ability density spread in both directions with increasing tlme.[18 24 A narrow Gaussian peak arourt=0 develops a
At the shortest tim&\ =64 ms, when the mean displacement™ '~ ™ P P

(Z) in the flow direction is 16Qum, considerably less than shoulder for increasing times and finally disappears for long

the bead size, and when the root-mean-square displaceméHpes; the shoulder, on the other hand, gives rise to a_moth_er
due to diffusion, ’_2_(2 (A)), is only 16 um, the total spread p.eak.that even.tuallly becomes the center qf a Gaussian dis-
at the outermost linécorresponding to aboul; of the peak ~ rieution, and is given by the average displacemeh}
probability density is almost the same iX andZ. Thus, for ~=v*A. Observing the one-dimensional propagaRy(Z)

an average displacement less than the bead size, the particRl§ne leads to a simplified interpretation of two components,
spread to a similar degree ¥arandZ. The same is observed one quasistatic and the other moving with-v*. This can
from experiments with smaller flow rates and hence evere seen by comparing the two-dimensional propagator with
smaller average displacements. For longer times and fdts marginalgsee Fig. & in this example for 42-ml/min flow
larger flow rates, however, the shape of the propagator beate andA=231 ms, the peak foP,(X,Z) is still at Z
comes more elongated, and large particle displacements 06200 um, while its projection P,(Z)=[PA(X,Z)dX

cur preferentially alongZ. A closer look at the shape of shows a maximum probability density near 6@t. As the
individual contour lines reveals that the ratio of their main marginal represents an average oveiXatlisplacements, part
axes,Z/ X, is changing, this ratio being larger for contours of of the information about the real properties of the displace-
higher probability density. This feature suggests that near thenent probabilities in twdor thre@ dimensions is lost, which
higher levels of probability density, which are associatedcan lead to misinterpretations.
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tions generally coincide much better for small average dis-
placements, as long as the margiRal(Z) can be described

by a peak neaZ=0 and an asymmetrically decaying tail at
larger displacements8,24,25. The difference between ex-
periment and simulations has been discussed previously, as
possibly arising as a consequence of the surface relaxivity
that tends to remove a fraction of the molecules near the
walls in the NMR experimenf25]. Due to the nonslip con-

-500

E 5001 dition near the wall, this affects mainly spins with small
=2 velocities, and might lead to a faster decay of the peak near
N 1000; Z~0. However, allowing a loss of particles at the wall did
not influence the result in earlier simulatiof4].
1500} The influence of large Peclet and Reynolds numbers was
also mentioned in Ref.24]. As in this previous investiga-
2000 s s s tion, edge effects can be ruled out as the inner diameter of
-1000 -500 0 500 1000 the tube is equal to 45 bead diameters.

X [pm] It must be pointed out that the deviations only affect the
peak at small displacements, and therefore a fraction of par-
ticles that show small net displacements apart from their
Brownian motion; this fraction disappears much later in the
simulation. However, the behavior for short times is well
represented by the simulations, as well as the probability

In Fig. 5, simulated propagators at equivalent times arélensities for large displacements. The numerical simulations
shown for comparison. A similarity is observed for the gen-coincide reasonably well with the experimental results once
eral shape of the contour lines and their axis ratios. Howevethese limitations are considered.

a major difference can be found with respect to the peak of
maximum probability density. It is much more persistent in
the simulation than in the experiment, being prominent even
at the longest evolution time of 750 ms. In the simulations, it In Sec. VI A, we described the evolution of the propaga-
eventually disappears fak=5s. Experiments and simula- tor P,(X,Z) as a function of time\ in a qualitative way by

FIG. 4. Two-dimensional average propagaly(X,Z) for ex-
perimental data at a flow rate of 42.0 ml/miA=231 ms. The
marginalsP,(X) and P,(Z) are drawn along th&X and Z axis,
respectively.

B. Time and displacement dependence
of moments of P, (X,Z)
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FIG. 5. Two-dimensional average propagaf®y(X,Z) for simulated data250 000 particlesat a flow rate of 42.0 ml/min. All
propagators are normalized §d P,(X,Z)dX dZ=1. Contour lines are drawn from approximately 0.05 of the peak intensity in linear
spacing. Evolution timed are as indicated.
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T — ] leads to nonzero first momen¢X). This effect, however,
] can be controlled, and is avoided when centered moments
are analyzed.
10% 9 In Fig. 6, the average displacemerf) obtained from

] ] experimental data and from the simulations are compared for
all three flow rates. Both sets coincide satisfactorily. The
slope of the experimental data yields an interstitial velocity
of (3.120.1)x 10 4 m/s for the flow rate 4.8 ml/min, (8.6
+0.2)x10 *m/s for 14.0 ml/min, and (2.580.05)
X 103 m/s for 42.0 ml/min, respectively. Given the dimen-
sions of the system, this leads to an effective porosity of the
sample of €=45*+2)%, in good agreement with the value
10H—— - . —_— assumed for the simulated random sphere packing.

0.1 1 From the above result, it can be concluded that the first
Als] moment(Z) in fact scales linearly with timd; in all further

discussions, the time variable can therefore be replaced by
the average displacement in the flow direction.

The second moments of displacements parallel and per-
pendicular to the pressure gradie(#?) and(X?), contain
contributions from both Brownian motion and convection.

di ing its sh df h lobal and | The second moment from self-diffusion alone is isotropic
iscussing its shape and features such as global and locg] 4 given by the relation

maxima of probability density. For a quantitative description

<Z> [um]

FIG. 6. Average displacement in the flow directiq@), as a
function of time for experimenta{open symbols and simulated
data(solid symbol$. Solid lines indicate a linear fit to the experi-
mental data. Numbers denote flow rates in ml/min.

we will first focus our attention on the development of mo- (X?(A))y=(Z*(A))=2D(A)A. (13
ments of P, (X,Z) with increasing encoding time and their
dependence on flow rate and Peclet number. For an infinite isotropic medium,D(A) is a time-

The general definition of moments oth order is given as  independent constant and equal to the self-diffusion coeffi-
cient D,. Diffusion within a restricted geometry shows a
m_ n n _ n more complicated pattern. While for displacements much
(X >_J P(X,Z)X"dX dz, (z >_J’ P(X,2)27dX dZ smaller than the wall separatioD,— D is found, displace-
(10 ments much larger than both the average pore size and the
correlation length of the pore space lead to a constant self-
It can be expected that the evolution of moments is endiffusion coefficient reduced by a certain factor which de-
tirely determined by the spatial structure of the porous syspends on the porosity and the tortuosity of the sysf8hj.
tem and the consequent properties of the velocity field. Thén the intermediate rang®,(A) can be expressd86] by the
moments are only indirectly affected by the time variableshort-time expansion
inasmuch as it separates regimes where diffusion and flow,
respectively, are dominant for the resulting mean-squared D(A) 4 S
displacements or second moments. For the first moment, D_Ozl_ﬁv VDoA+0(4), (14)
however, a simple relationship is found:

whereS andV are the surface area and the volume of the

(X)=0, (11 porous system. However, for the glass bead system investi-
gated in this study, a significant decreasebgf\) can only
Q be expected for times in the order of 1 s, where the influence
(Z>=v_*A= — A, (12)  of flow is already dominating.
€A Taking flow into account, in the limit of infinite times, the

propagator is expected to become a Gaussian centeréd at
where Q is the flow rate andA the cross-section of the =0 intheX direction and a Gaussian shifted by the average
sample. The average interstitial velocity is also known as  displacemenZ,=v* A in the Z direction. It has been shown
the Dupuit-Forcheimer velocity34], and is a well-defined that the shape of the propagator becomes roughly Gaussian
guantity as the setup of the experiment guarantees a constdnt average displacements much larger than the bead size in
flow rate Q and thus a constant*. The average displace- Systems similar to the one investigated in this wiiR,24.
ment in the flow direction{Z), must then be proportional to However, as we are interested in the intermediate regime
time as the contribution due to self-diffusion remains zerowhere this limit is not yet reached, we investigate the time
for all times. As no net flow occurs iX, and Brownian dependence of the second momentXandZ.

motion leads to an isotropic spreading in all directiof}) The spreading of the propagatorXnandZ is best moni-
must be zero. The assumption of an isotropic medium seentored 2by looking at tzhe centered second mome({tX
justified due to the large number of beads . 7x10°) al-  —(X))*) and{(Z—(Z))*). While the former is identical to

though the local porespace favors anisotropic spreading. THe<%) as (X)=0, the latter describes the spreading of the
smaller number of unit cells in the simulation, containing probability density distribution around the center (@)
only 150 beads, can give rise to a certain asymmetry which=v* A. A plot of the centered second moments is shown in
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FIG. 7. Dependence of the centered second momgdts (X))2) and ((Z—(Z))?) on the average displaceme{®). (a) Centered
second moments; experimental results are denoted by larger, open sythp@srivative d(log{(X—(X))2,(Z—(Z))?))/d(log(Z)) from
simulated data indicating the exponenin the expressiog(X—(X))2),{(Z—(Z))?)=(Z)".

Fig. 7(a@). Moments in both directions are found to follow a (Z—(2))?y=(Z)7xA?, (15)
sigmoidal pattern with a larger slope for intermediate dis-

placements and a shallower dependence(dh for both  a plot of the exponent [see Fig. Th)] reveals thaty=1
small and large average displacements. Assuming a powedescribes the region where self-diffusion dominates the
law relationship illustrated foZ by spreading of the propagator function at short times, while
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=1 is again reached asymptotically for very large displace- 10°3
ments exceeding 10 mm, reflecting the limiting pseudoran- 1 (@ K‘
dom walk character of the displacement distributions ex- ] RS
pected at long times. In between, a maximuryiis found at 1074 20 Vo J
a displacement which depends on the Peclet number, and is (3 E
shifted toward larger average displacements for smalleyPe. o ] [ﬁ’
is generally larger fo¢(Z—(Z))?) than for{(X—(X))?2). For = ] ’0’ AAAA "
the highest flow rate used in this study=2 is almost 10" IS 3
reached, which can be expected to be the maximum value ] $ X posra
possible; it is considerably less for the smaller flow rates. ] m O Pe= 88
Note the minimumy<1 in {(X—(X))?) occurring at(Z) 10°4
~1 mm. This minimum might be related to the particular 10" 10° 10 10° 10° 10° 10°
shape of the two-point correlation function of the matrix <Z> [um]
which possesses a negative regidanticorrelation”) be- .
tween 0.9 and 2.0 bead radii for a random packing of mono- L I A
sized spherical particlg26]. Indeed,(Z) at the position of 1 ® ]
the minimum corresponds to an ave<ra>ge transverse displace- ] ;2% il ]
ment {(X—(X))?) of about 350um or 1.2 bead radiisee f(
Fig. 7(@]. ° £ Yeww
While this is not a sufficient model for the system studied 2 103 & Jv E
here, it is of interest to compare the behavior ¢Z a ] + % o Somm
—(Z))?) with that predicted for Taylor dispersion for flow ] * ! PRV
between parallel platd87], i.e., ] .o<.>.°o v v Pe - 245
® O Pe= 88
v*%a?)  p*2at 20 /a2 10"
(Z2—(2))?»)=| 2Dy+ —p | A~ —apz(1-e77 DoAlaty, 100 10° 100 1¢ 100 10t 10°
0 0 (16) <Z> [um]

FIG. 8. Ratio of dispersion coefficients to the self-diffusion co-
efficientD, for experimental and simulated data) Parallel to the

— flow direction, D} ((Z)). (b) Perpendicular to the flow direction,
2DA + % D*¥2A2 4 O(A?’), A<a2/D0 DI((Z)) ] «2) p

The limiting cases are found to be

(2—(2)))= ( 07232 , . .
ot —=—|A+0O(1), A>a’/Dy. where{(R—(R))*) is the centered second moment in three
Do dimensions. In an isotropic porous medium with an intersti-
(17 tial velocity v* parallel to thez axis,D* can be decomposed
A crossover fromy=1 to y=2 is observed for short dis- N0 parallel and transverse componefits]
placements, equivalent to short times wheke<a?/D, D* 0 0

whereas a decrease gfback towardy=1 is predicted for . D* 0
the conditionA.=a?/D,. The observed behavior is qualita- Dr=| 0 L . (20)
tively similar to the classical Taylor dispersion, showing a 0 0 I

crossover fromy=1 to 2 at a time scale when the flow effect
on the mean-squared displacement becomes dominant ov-g
Brownian motion. At largefZ), when the spreading of the

g ;war?:;%resljz S:hli)ser;iar\nlﬁgri?; ilsn | g;f ;: ?ﬁ eo;p%;%iggigte icular gnd parallel to the flow d.irectﬁon are Eqmpared for the
now dominated by the pseudorandom walk caused by ﬂovywee different flow rates used in this stu_dlg'l is found to
around the obstructions of the porous solid. become constant for average displacementZ)

A comparison of the spreading of the particle probability =300—400um, a value that seems to be roughly indepen-
density function due to flow and as a consequence of Browndent of the Peclet number. From this point on, the displace-
ian motion is achieved by determining the ratio of the com-Ments inX are spreading in a way that is characteristic for a
ponents of the dispersion tensb* and the self-diffusion Gaussian propagator. In their treatment of_ dlspers_lon, Koch
coefficientD,. The dispersion tens®@* can be regarded as and Brady{8] suggested thad? was determined entirely by

its limiting value in a timeA .=a/(v* ®¥?), whered is the
D* =D*(A)=D*({Z)). (18)  solids volume fraction. This time is equivalent @)
=a/®Y2 which for ®=0.55 gives(Z)=800um for the
It is defined by grain diameter oa=600 um. This is within a factor of 2 of
the values represented in Figb®
_ d(R—(R)?) D approaches its asymptotic limit much more slowly
B dA ' than DT, and does not become constant within even the

pe dispersion tensor remains time dependent as long as

In Fig. 8, the components of the dispersion tensor perpen-

D* (19
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range of the simulations. For the highest flow rate of 42 i i '
ml/min, D} is still changing for average displacemef® i > ||
exceeding 100 bead radii. The limiting values @f can, 100 4
however, be estimated reasonably well; they fall in the same 3 | b
range as results presented in the literatsee Ref[20] for a S, 80+ —e—039| 1
compilation). The characteristic time at which the longitudi- S o
nal dispersion coefficient becomes roughly constant can be :5; 601 ) —a—118| ]
estimated from the simulated data to about 20 s; this is in & 40 f . N
good agreement with relations given in the literature, where § o ] _z_;zz
the quantityD,A/L? is of order unity[38]. Koch and Brady . /O/O/A .
[8] derived expressions for the time required for the nonme- ] A s i%
chanical contributions to longitudinal dispersion to reach o-—w/ . r
their asymptotic limits. The mechanism of relevance to this 0.0 05 10 15
study is the so-called boundary layer dispersion arising from time [t]

the nonslip condition of the velocity field at the walls of the £\~ ¢ The residence time distributien(Z’) as a function ofr
solid matrix. The time for this process to reach its asymptotig,, flov;/ t.hrough a 60Qum glass bead pack at 14 mi/min. The
limit is of ordera P_e”3/v* which, when C_o_nverted into val-. definitions of Z' and 7 are dimensionless as given in RéL4]:
ues of(Z) appropriate to the three velocities used here, givez’' = 7k~ 2 and r=(Z)k~ 2, wherek"?= 2 ~1a? is the screening
(Z) in the range (3-5%10° um. This can be seen to un- length. The corrected Peclet number according to Ref} is Pé
derestimate the values suggested by the simulation results in,*kV2/p = 150.

Fig. 8@). The latter are supported by the experimentally de-

rived data in that, at the limit of the experiments, Corresr’ond'elsewhere{16—23. As with ¢.(Z), which allow the calcula-

ing to (Z)~10° um, there is no sign of approach 1o o of racer RTD'sc,(7), so theP,(Z) give access to the
asymptotic behavior. , , - equivalent NMR determined RTD’s. The formal equivalence

In Ref. [20], in which the dispersion coefficient was de- 1o jires the assumption that the distributed labeling of mo-
termined by PGSE NMR from the log-data, a much faster |ocjar positions by NMR is the same as the infinitely thin,
approach towar®j’ (A) ~const was found for a similar sys- ixfinite area transverse labeling assumed in tracer measure-
tem of spherical beads. An identical analysis of the measurgyents. All that is required is that, as the NMR method mea-
ments presented in this work led to the same values Ofres displacements, the distribution of initial labeling is rep-
Dj(A) as those obtained from the full propagator, as deyesentative of all locations in the fluid phase. Based on their
scribed above, and we are unable to offer any explanation fafionlocal formulation of the transport problem in porous sol-
this difference. ids, Koch and Brady calculateri(Z) andc,(7) for a Peclet

The dependence of the dispersion coefficients on Peclefumber of 100 and a solids fraction of 0.5 which are similar
number has been writtef89] in the dimensionless power- o those used in this study. It is clear from previously pub-
law form lished data, e.g., Ref§18—23 that the calculated (Z)

. shown in Fig. 2 of Ref[14] show little agreement with those
Dj' /Do Pe". (21)  observed experimentally. We have used our data to calculate
] ) o RTD’s for the 600um glass sphere bed using the same defi-

For Pe much larger than unitg=2 is found if diffusion is  \itions of variables as used by Koch and Brdd]. Figure
the predominant mixing effect between different velocities,g shows these NMR-derived RTD'’s for the flow rate corre-
as is the case for dispersion in laminar flow in a capillarysponding to Pe 245 (Pé=150 according to the screening-
tube. If velocity variations within the network are the main length corrected definition of Reff14]) andd = 0.55. It can
cause for dispersionp=1 is observed. For a system con- pe seen by comparison with Fig. 3 in REE4] that there is

taining regions where the fluid velocity is large and othersjiye similarity, even qualitatively, with the predictions of the
where it is small, an intermediate behavior is expe¢ted. theory.

In Ref.[26], flow through systems containing either spheri-
cal or ellipsoidal particles with a wide range of aspect ratios
was simulated numerically. An average relationship of o _ _ _
D}/Dy=0.26 P& andD*/D,=0.27 P&"?was found for The principal aim of this paper is to show that our NMR

Pe=10, which coincides well with the values in this study. €xperiment gives direct information on correlations between
In particular, the proportionalit?/D* «Pé"2 [40] is found axial and transverse components of the fluid transport. The

to a good approximatiofsee Figs. &) and 8b)]. centered second moments are generally _found to be larger
along the pressure gradient than perpendicular to it. In fact,

. , N , they show a mutual dependence for long times when the
C. Residence time distributions(RTD’s) from PGSE NMR limit of Gaussian propagators is reached. However, as will
The displacement distributions, such Bg(Z), derived be pointed out later, the moment§X—(X))?) and
from PGSE NMR, are formally equivalent to the tracer dis-{(Z—(Z))?) are not correlated foA — in the strict math-
tributions which are used to characterize fluid transporematical sense, despite this proportionality.
through porous solidgl4,15. In particular,c (Z) displayed The centered second moments represent averaged quanti-
in Fig. 2 of Ref.[14] correspond exactly to thie,(Z) deter- ties for the whole system, and do not sufficiently describe the
mined by the NMR experiments described in this paper anéctual connection between displacements in both directions.

D. Correlation between displacements inX and Z
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b I L From the simulation it is clear that for displacements
4 (a) . much larger than the diffusion rangex?) follows a power-

] ] law dependence d. The slope in the log-log plot is found
to be 0.74-0.02 both in the experimental and the simulated

x ¥4
< . N *:i x 761ms| A data for Z=500 um. While for small Z, isotropic self-
3 .« I‘.:' + s1zms | | diffusion is dominating anck andZ are uncorrelated, there
A 103 R A'A set MEDeRind I remains a positive correlation between both quantities
% . oo s t52ms| ] throughout the full range of.
S Lt : ZZ i The quantification of correlations for the entire range of
L ] displacements is necessarily connected with the reduction of

specific properties onto a single characteristic figure. The
proper mathematical definition of the correlation coefficient
which relates two parameteds and B, pa g, is given as

follows:
10° cov(A,B)
PAB= ) (22
vVar(A) yVar(B)
‘“g where covariance and variance are defined as
£ 10 COM(A,B)=(AB)—(A)(B), (23
\'%
] Var(A)=(A%)—(A)?, (24)
P
10° R and wherg(A), for example, is given by
10’ 10° 10° 10*
Z (um] <A>=f f P(A,B)A dA dB (25)
FIG. 10. Mean-squared displacement perpendicular to the flow e
direction, (X?), as a function of displacement. The moments Both experimental and simulation results are subject to

have been calculated from the _two-dim_enslional propage(u:])rEx- _ noise that makes the calculation of higher moments increas-
Ec_anrgental data as shown in Fig.(B) Simulated data as shown in i inaccurate. One is therefore interested in the simplest
9. > possible correlation relations, such as

In particular, one would like to know if, for a given encoding
time, a spin-bearing particle that has traveled a larger-than-
average distance in the flow direction is also expected tdt was found that the general features of these guantities and
have a larger-than-average displacement in the perpendiculdteir evolution with time and flow rate remain the same
direction. In other words: are large displacement&inor-  while only the absolute values are changed slightly.

related with large displacements ¥or not? Figure 11a) compares the correlation coefficiernigz ,

A way to gain insight into this question is to compute thefor the experimentally obtained propagators. Correlations are
second moment¢X?) as a function ofZ. One thereby generally larger for high flow rates, i.e., larger Peclet num-
chooses a subset of particles that have reached, by differebers. Furthermore, an increase of the correlation coefficient
pathways, a displacement betweemandZ+dZ after a time  with (Z) is found for 4.8 ml/min, a decrease for 42.0 mil/min,
interval A. The inverse approach of plottigZ—(Z))?) vs  and an intermediate behavior showing a maximum for 14.0
X is also justified, but less illustrative. ml/min. Despite an estimated error of up 1010% in the

Figure 1@a) shows a superposition of the experimentalabsolute values, the maximum seems to appea{Zprbe-
data for 42 ml/min, as compared to the simulations in Figtween 100 and 30@&m for 14.0 ml/min.

10(b). In Fig. 1Qa), it can be seen thdX?) (which is iden- The interpretation becomes clearer by considering the
tical to the centered second mompist only weakly depen- py2, derived from the simulated propagators. These are
dent onZ for small Z as this region is dominated by self- shown in Fig. 11b), and cover a wider range of displace-
diffusion which is isotropic. The slope then rises ments than the experimental data. The dependence on flow
monotonically toward largef with all values ofA achieving  rate is obvious. A maximum is clearly seen at displacements
an approximately common slope in the log-log plot. near to the bead radius. Additional simulations for 4.8 ml/

The fact that the curves for different times are nearer tanin have been run with self-diffusion coefficients®§/100
each other in the simulated data as compared to the expeind D,/10000 in order to reveal the effects of flow alone,
mental ones is a consequence of the sharper and more pand these are included in Fig. (bL
sistent peak around zero already mentioned. It has the effect From the behavior of the correlation coefficient, the fol-
that “static” and “flowing” particles are more strongly lowing interpretation can be drawn. At very short times, par-
separated than in the experimental case. Thus the diffusionicle displacements are dominated by Brownian motion on
dominated regiotiwhere(X?) scales with time and therefore scales much smaller than the bead size. This motion is ran-
with (Z)) is restricted to a smalleX andZ. dom and isotropic, and generates no correlation between dis-

PIx,z»  P|x|,z2»  Px2zy Px2z2



PRE 58 SPATIAL CORRELATIONS AND DISPERSION F& . .. 6217

LA which is solely determined by the spatial structure of the

044 (a) E 42mifmin | velocity field. It will start to decrease when the average dis-
® Ppdiid placementZ) exceeds the persistence length, the observed
% ] maxima in Figs. 1(a) and 11b) being a consequence of the
0.3 4 combined effect of Brownian motion and flow.
~ E i For very large displacements, a complete loss of correla-
X E ] tion is expected as the dispersion in battandZ becomes

determined by the pseudodiffusive character of the displace-
ments. Note that although the latter condition is almost met
for the largest displacements in the simulation, which is in-

0.1 — T — T dicated by a Gaussian-like shape of the marginal propaga-
10 tors, the correlation coefficient has not yet fallen close to

<Z> [pm] zero.

The peak in the correlation coefficient is remarkably well

o P
o
Ho
Ho-
H
F-
i
HH
HH
cH

04 ' ' ' - N i pronounced in the experimental data, given the fact that a
’ polydispersity of the real glass beads exists. However, while
0.3+ | the absolute values gfin the experimental and in the simu-
) lated data sets are comparable for the largest flow rate, the
dependence on the Peclet number is more pronounced in the
NN~°'2' e experiment. Given thaD, v*, and the bead diameter are
a ®  42mimin,D=D, || identical, and that edge effects are not expected to play any
019 o 4 mymin. DD, role for the displacements observed, deviations of the simu-
] ® 48 mimin, D=D/10° |] lated from the real velocity field must be assumed which
0.0-¢ sosmmms’ & 4.8 mmin, D=D /10" affect small flow rates most. This feature might be connected
R B D A to an observation of the peak near zero displacement that is
10" 10° 10' 10° 10° 10 10°

more persistent in the simulation than in the experimental
results: a larger fraction of particles possessing both skall
FIG. 11. () Correlation coefficientsyz, for experimentally an_d smaIIZ_h_as to influence the absolute value of the corre-

obtained two-dimensional propagators. Errors bars are estimated {gtion coefficients. o .

10% from the scattering of the computpdralues.(b) Correlation The observation of a positive correlation betwéeandZ

coefficients py2 , for two-dimensional propagators obtained by Suggests the concept of a preferential flow direction, or, more

simulation. Open symbols indicate simulations at reduced selfprecisely, a direction which is more probable to find than

diffusion coefficients oD /100 andD /10 000, respectively. others. For example, the probability density of particles re-
maining neatX~0 decreases for larger displacementsin
order to visualize the geometrical properties of this correla-

placements ifX andZ. For larger times, the motion is in- 10N, we write the joint probability density as the sum of the

creasingly influenced by the velocity field in the pore SpaCe'product_of its marginals and a function tha}t incorporates the

with its preferred direction along the pressure gradient. Th&OTelation between the measured quantities:

velocity field represents the way fluid particles probe the _

spatial structure of the pore space under the constraints of the Pa(X,2)=Pa(X)Pa(2)+Ca(X,2). (26)

boundary conditions. The local velocity distributions in aTne correlation matri ,(X,Z) contains only zero elements
pack of glass spheres were discussed in Rifl; regions of ¢ gisplacements inK andZ are mutually independent. This

large and small local velocities could be identified whichc4se'is realized for Brownian motion in an isotropic system
indicate the position of the particles with respect to the main,nere

flowlines. It is clear that larger Peclet numbers allow fewer
particles to change between these pools in a given time, re-

<Z> jum}

sulting in larger correlation coefficients at any given dis- PX.2)=5——— ex] — (X—Xo)?/(20%)]
placement. For very small self-diffusion coefficients, mo- X7z

tions become dominated by the flow field, as is clear from Xexq—(Z—ZO)Zl(Zaé)].

Fig. 11(b).

At a characteristic length scale, fluid molecules will haveHowever, if X and Z are correlated, a plot oP(X,Z)
to change their flow direction or exchange between the pools- P(X)P(Z) renders the correlation matrix directly.
of large and small velocity; the persistence length of a This operation has been performed for the propagators in
streamline must be connected to the typical structural size dfig. 4, and is presented in Fig. 12 for the experimental data.
the system, and for very large displacements it becomes irSimulated data result in equivalent plots. Compared to the
creasingly unlikely for a particle to flow in its initial direc- actual propagators in Fig. 4, the difference propagators show
tion. One would therefore expect a maximum of the correlaa much larger amount of structure. One observes a fourfold
tion coefficient that is intimately related to the characteristicsymmetry: a positive peak for sma{landZ develops into a
length scale, which is given by the bead size in this systemmarrow negative region for largéand smallX as well as for
Note that in the complete absence of Brownian motion, thdargeX and smallZ. For intermediate values of andZ, the
correlation coefficient will start off as a constant, the value ofsign of C,(X,Z) is again positive, and its local maximum
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FIG. 12. Difference propagatd,(X,Z)=P,(X,Z)—P,(X)P,(Z) for experimental data at a flow rate of 42.0 ml/min, axis scales in
pm. Contour lines are drawn from approximatety.05 of the peak intensity in linear spacing; numbers indicate probability densities in
10* m~2 using the normalization of Fig. 4. Positive values are indicated by solid lines, and negative values by dashed lines. Dotted lines
representC,(X,Z)=0. Data are cut at points wheRg, (X,Z2) is typically below 0.02 of its peak value to avoid contributions by noise; this
determines the outer bounds of t8g(X,Z)=0 line.

describes a line that is curved in the flow direction. Thesanetry and a sign change at certain coordinates. A simplified
general features are independent of the parameters in thdew of C,(X,Z) might lead to an interpretation of the
experiment or the simulation and have been observed beforiiges of positive values as the lines of preferential displace-
for flow in porous sandstone rock&7]. It is also found for ments. One would then conclude that fluid molecules would
short-time simulations for average displacements down to preferably flow along a certain angt,., relative to theX

few micrometers. However, for a diffusion coefficient re- x5 while, for 6~0° and #~90°, displacements are less

duced by a factor of 10in the simulations, the features jikely to be found. One possible definition @, employs
become much sharper, revealing the initial state of the Ve'°cdetermining the maximum of the radial first moment
ity field before spreading due to self-diffusion or changes<R(9)>, with respect to the origin dX,Z} =0. While 6,4, is

n local ﬂ.OW _dlrect|ons lead to a broadgnlng n the correla not found to be significantly influenced by the flow rate for
tion matrix picture. The absolute magnitude in the correla- . : A L . _
. . . the case investigated in this study, it is certainly a function of
tion plot, on the other hand, decreases with longer encodin

times (see numbers at contour lines in Fig.)ldue to the ﬁqe ratio of the average di;pla_cementsziandx direptic_ms.
general spreading of the probability density function. ThisVe are currently considering in more detail the significance
is analogous to the spreading of the propagatgtX,z)  °f Ca(X,Z) and the role of the reference st&g(X)P,(2)
itself. in its definition and physical interpretation.

The correlation matrix can be understood as a function
that identifies regions of correlations larger or smaller than
the reference state,(X)P,(Z) which formally defines the
independence of the variabl¥sandZ. However, as pointed E. Comparison with model systems
out by Wadsworth and Bryaj#2], while the use of a func-
tion such asC,(X,Z) gives a clear answer to whether the  Another approach towards a better understanding of the
variablesX andZ are correlated or not, the “mathematical meaning of correlations between displacements can be ob-
representation of the relationship, once demonstrated, is aained by performing independent simulations and assuming
art in itself.” That said, it is clear that, because of normal- model propagators. One case which can be solved analyti-
ization of the propagators in general, the integral overcally assumes a Gaussian propagator alérfgr each point
CA(X,Z) must be zero, which necessitates a particular symin Z, the variance of which scales with a poweraf
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4 , o This propagator fulfils the normalization condi-
P(X,Z)= e ZBe=XI0NZ*)  (27)  tion [[P(X,Z)dX dZ=1 when defined for positive
mﬂ<a+1>/zr<“+l) X and Z only. The general moments are repre-
2 sented by
n+1 m o a+l
n/2 p(m/2) +(al2)n — 4 — -
- _)\ B F( 5 F<2+2n+ 5 .
(X"Z"m)= p— , (28
VaT | ——
2
the correlation coefficients are given by
n+1 m o a m
I'N——_/|I'=+=n+u|l(uw)-T|=n+u|l| =+
> S Tonte (m) PN R
pxn zm= (29
1 n+1 a m
1\T|n+3 T(an+p)T(p)Jm—T2 —— |2 St a P(me )T () =12 -+

where u=(a+1)/2. For «=0, all correlation coefficients zee-2° Although similarities between the experimentally
are equal to zero, as expected. Note that the correlations dhtained propagatdP(Z) and this distribution might exist,
not depend on the parametgBsand \. The dependence of the persistent peak of high probability density near the origin
px,z andpy2 7 on « are shown in Fig. 13. cannot be represented. Also, the expected Gaussian shape of
Numerical computations of this model propagator haveP(Z) for long times is not realized by the model. Neverthe-
been performed employing a MatLab routine; the resultingess, the general properties of the correlation matrix coincide
moments and correlations were found to match with the thereasonably well with both the experimental and simulated
oretical values within less than 1%, depending on the resodata presented above. Tentative analyses of flow through
lution of the calculation. The findings in Sec. VI D, shown in other porous media lead to similar characteristics, but with
Fig. 10, suggest @=0.74. The propagator and the correla- @n exponent @ considerably different from the one obtained
tion matrix for this parameter are shown in Fig. 14. Thefor packed glass beadd3]. A model propagator in this or a
similarity to the bead system investigated in this study ismodified form can therefore serve for the discussion and
striking at first sight. The main difference between modelCOMpParison of general features of the spreading procexs in
and experiment lies in the short-displacement behavior. Th8NdZ, while certain details such as the small-displacement

marginal P(2) of the distribution of Eq(27) has the form and Iong-timg bghavior contair_1 'additional information about
the characteristics of the specific system.

In an attempt to gain some further insight into the influ-
ence of local pore geometry on the form of the joint prob-
061 B Pz i ability density, we have analyzed the probability densities
0‘5_* — 4 generated by the simple two-bond capillary model, described
{1 ] earlier, for a series of values of the anglein the range

07 T T T

0.4 . 0°-80° with Av,,(#=0)=2l. Clearly the dependency of
a o3l ) the probability density one will be confined to regions
where the displacement exceeds the lengtif the initial
0.2+ 7 capillary; as the probability density is small in those regions,
011 ] we expect the linear correlation coefficient and first moment
to be relatively insensitive to variations in We have there-
007 T - pa A fore calculated the ratiq(X—(X))?)/{(Z—(Z))?) as a func-
o tion of a. We find for this model that

FIG. 13. Correlation coefficientsy ; and px2 ; for the model
propagator described in the teMdtq. i27)] as a function of the «X_<X>)2>:0 287+0.178 1— cos ) (30)
parameter. (Zz—{(z)®» ' &/
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determined experimentally for water flow in a system of
packed glass beads. Numerical simulations have been carried
out for a wider range of average displacements than was
accessible by experiment.

The simulations, obtained by successively generating a
random packing of spherical beads, solving the Stokes equa-
tion, and monitoring of the displacements of particles ran-
domly distributed in the pore space, have been shown to
agree reasonably well with the experimental results. The ma-
2 s : : jor part of the deviations can be explained by a different
) ) ' ' spreading behavior of a fraction of particles remaining near
their starting positions.

(b) ©°° ' ' ' The evolution of second moments of the displacement
distributions as a function of flow rate and encoding time
shows the crossover from a regime dominated by Brownian

o-5p motion to an asymptotical approach toward propagators of
N b ] Gaussian shape. The limiting dispersion for long times is
B reached much earlier iIK compared taZ. The dependence
1-5¢ of the dispersion coefficier®* on the Peclet number sug-
2 : L . gests an intermediate behavior where the mixing process is
-1.0 -0.5 0.0 0.5 1.0

dominated by velocity variations but contains a non-
negligible contribution from self-diffusion.
FIG. 14. (a) Two-dimensional propagat@(X,Z) for the model The mean-squared displacement perpendicular to the flow
described in the teXEq. (27)]; 2a=0.74. Contour lines are drawn direction follows a power-law dependence orior largeZ.
from 0.05 of the peak intensity in linear spacirig) Correlation  From the full joint probability propagator representation, a
matrix C(X,Z)=P(X,2) —P(X)P(2) for the plot in(a). Contour  correlation betweerX? and Z is found that decreases for
Iines_are dra_\/\(n from+0.005 _of .the peak int_ensjty in nonlinear_ average displacements in the flow directic@), larger than
spacing. Positive V.a'ues are 'nd.'catEd by solid lines, and Negalvg characteristic length equivalent to the bead radius, while
values by dashed lines. Dotted lines represafi, z) =0. decreasing again for much smallgt) due to the dominating
effect of isotropic self-diffusion.
To compare this result to our experimental and simulated A plot of the correlation matrixC,(X,Z)=P,(X,Z)
data, it is necessary to relate the bond lerigth the char- —P,(X)P,(Z) possibly indicates preferential directions for
acteristic length scale in our sample. We tdkel/3; this  displacements by larger-than-average correlation values for a
choice, although inevitably to some extent arbitrary, is physispecific region of displacements. The shape of this region
cally reasonable and gives values @) and((Z—(Z))®)in  changes with increasing flow time. Correlation matrices of
the ranges 58—6%m and 4000-610@m?, respectively, similar shape can be generated by appropriate model propa-
consistent with the data presented in Fig)7 ator functions. Numerical simulations have shown that the
The second-moment ratios for our experimental and bef'i‘dgeculiarities of the matrix shape reflect characteristic struc-
pack simulation data are almost independentf in the (14| details such as size and orientation of microcapillaries.
range of(Z) under consideration. They do however dependzyperiments and theoretical analyses are currently being per-
upon Peclet number, ranging from 0.5 for-P&8 t0 an ap-  tqmed to describe a wider range of porous systems by the
parent limit of 0.4 for Pe-250, when spreading is dominated 6 fies of fiuid flow through their pore spaetS]. Two-
by convective transport. The limiting value is the most aP-gimensional propagators can be employed to improve

propriate for comparison with our model, which neglects Gf"[he understanding of how fluids spread in a porous network

fects due to diffusion; Eq30) then yields a value of70° . S
; . and how this spreading is governed by parameters such
for a. That value is not unreasonable—for example, in a hex-

agonal close-packed structure fluid elements experience ¥ self—dlffusmn. coeff|C|ents' .and flow rateg, on the one
change in direction of 72° between entering and leaving and, and porosity, permeability, and tortuosity on the other
tetrahedral “pore.” However, in view of the simplicity of
our model and the fact that random packing must lead to a
distribution of pore geometries, we must regard this result as
merely illustrative of the sort of pore scale structural infor-
mation which could be extracted from the form of the joint

density at small displacements. ACKNOWLEDGMENTS
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